Representation Learning on Graphs and Networks (L45)
 CST Part III / MPhil in ACS

Victor Zhao
xz398@cam.ac.uk

1 Primer on Graph Representations

1. Mathematical definition of graphs:

A graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ is a collection of nodes \mathcal{V} and edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
The edges can be represented by an adjacency matrix, $\mathbf{A} \in \mathbb{R}^{|\mathcal{V}| \times|\mathcal{V}|}$, such that

$$
A_{u v}= \begin{cases}1 & \text { if }(u, v) \in \mathcal{E} \\ 0 & \text { otherwise }\end{cases}
$$

2. Some interesting graph types:

- Undirected: $\forall u, v \in \mathcal{V} .(u, v) \in \mathcal{E} \Longleftrightarrow(u, v) \in \mathcal{E}$ (i.e., $\left.\mathbf{A}^{\top}=\mathbf{A}\right)$
- Weighted: provided edge weight $w_{u v}$ for every edge $(u, v) \in \mathcal{E}$
- Multirelational: various edge types, i.e. $(u, t, v) \in \mathcal{E}$ if there exists an edge (u, v) linked by type t
- Heterogeneous: various node types

3. Machine learning tasks on graphs by domain:

- Transductive: training algorithm sees all observations, including the holdout observations
- Task is to propagate labels from the training observations to the holdout observations
- Also called semi-supervised learning
- Inductive: training algorithm only sees the training observations during training, and only sees the holdout observations for prediction

4. Node statistics:

- Degree: amount of edges the node is incident to:

$$
d_{u}=\sum_{v \in \mathcal{V}} A_{u v}
$$

- Centrality: a measure of how "central" the node is in the graph: how often do infinite random walks visit the node?

$$
d_{u}=\lambda^{-1} \sum_{v \in \mathcal{V}} A_{u v} e_{v}
$$

where $\mathbf{e} \in \mathbb{R}^{|\mathcal{V}|}$ is the largest eigenvector of \mathbf{A}, with corresponding eigenvalue λ

- Clustering coefficient: a measure of "clusteredness": are neighbours connected amongst each other?

$$
c_{u}=\frac{\left|\left\{\left(v_{1}, v_{2}\right) \in \mathcal{E} \mid v_{1}, v_{2} \in \mathcal{N}(u)\right\}\right|}{\binom{d_{u}}{2}}
$$

5. Graph Laplacian:

Let \mathbf{D} be the diagonal (out)-degree matrix of the graph, i.e., $D_{u u}=\sum_{v \in \mathcal{V}} A_{i j}$. Then:

- The unnormalised graph Laplacian: $\mathbf{L}=\mathbf{D}-\mathbf{A}$
- The symmetric graph Laplacian: $\mathbf{L}_{\text {sym }}=\mathbf{D}^{-\frac{1}{2}} \mathbf{L} \mathbf{D}^{-\frac{1}{2}}=\mathbf{I}-\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$
- The random walk graph Laplacian: $\mathbf{L}_{\mathrm{RW}}=\mathbf{D}^{-1} \mathbf{L}=\mathbf{I}-\mathbf{D}^{-1} \mathbf{A}$

Properties:

- For undirected graphs, \mathbf{L} is symmetric $\left(\mathbf{L}^{\top}=\mathbf{L}\right)$ and positive semi-definite $\left(\forall \mathbf{x} \in \mathbb{R}^{|\mathcal{V}|} \cdot \mathbf{x}^{\top} \mathbf{L} \mathbf{x} \geq 0\right)$
- For undirected graphs:

$$
\forall \mathbf{x} \in \mathbb{R}^{|\mathcal{V}|} \cdot \mathbf{x}^{\top} \mathbf{L} \mathbf{x}=\frac{1}{2} \sum_{u \in \mathcal{V}} \sum_{v \in \mathcal{V}} A_{u v}\left(x_{u}-x_{v}\right)^{2}=\sum_{(u, v) \in \mathcal{E}}\left(x_{u}-x_{v}\right)^{2}
$$

- \mathbf{L} has $|\mathcal{V}|$ nonnegative eigenvalues: $\lambda_{1} \geq \cdots \geq \lambda_{|V|}=0$

6. Spectral clustering:

- Two-way cut: partition the graph into $\mathcal{A} \subseteq \mathcal{V}$ and its complement $\mathcal{A}_{c} \subseteq \mathcal{V}$:

$$
\operatorname{Cut}(\mathcal{A})=\left|\left\{(u, v) \in \mathcal{E} \mid u \in \mathcal{A} \wedge v \in \mathcal{A}_{c}\right\}\right|
$$

Ratio cut metric:

$$
\operatorname{RCut}(\mathcal{A})=\operatorname{Cut}(\mathcal{A})\left(\frac{1}{|\mathcal{A}|}+\frac{1}{\left|\mathcal{A}_{c}\right|}\right)
$$

- Minimising $\operatorname{RCut}(\mathcal{A})$:

Let $\mathbf{a} \in \mathbb{R}^{|\mathcal{V}|}$ be a vector representing the cut \mathcal{A}, defined as follows:

$$
a_{u}= \begin{cases}\sqrt{\frac{\mathcal{A}_{c}}{\mathcal{A}}} & \text { if } u \in \mathcal{A} \\ -\sqrt{\frac{\mathcal{A}}{\mathcal{A}_{c}}} & \text { if } u \in \mathcal{A}_{c}\end{cases}
$$

Then

$$
\mathbf{a}^{\top} \mathbf{L a}=\sum_{(u, v) \in \mathcal{E}}\left(a_{u}-a_{v}\right)^{2}=|\mathcal{V}| \operatorname{RCut}(\mathcal{A})
$$

Minimising $\mathbf{a}^{\top} \mathbf{L a}$ corresponds to minimising $\operatorname{RCut}(\mathcal{A})$ (NP-hard as the constraint is discrete)

- Relaxing: minimise \mathbf{a}^{\top} La subject to $\mathbf{a} \perp \mathbf{1}$ and $\|\mathbf{a}\|^{2}=|\mathcal{V}|$

Rayleigh-Ritz Theorem: The solution is exactly the second-smallest eigenvector of \mathbf{L}
To obtain the cut, place u into \mathcal{A} or \mathcal{A}_{c} depending on the sign of a_{u}

- Can be generalised to k-clustering

2 Permutation Invariance and Equivariance

1. Informal definitions:

- Permutation invariance: applying a permutation matrix does not modify the result
- Permutation equivariance: transformation preserves the node order
- Locality: signal remains stable under slight deformations of the domain

2. Setup:

- Node feature matrix: $\mathbf{X}=\left[\begin{array}{lll}\mathbf{x}_{1} & \cdots & \mathbf{x}_{|\mathcal{V}|}\end{array}\right]^{\top} \in \mathbb{R}^{|\mathcal{V}| \times k}$, where $\mathbf{x}_{i} \in \mathbb{R}^{k}$ is the features of node i
- (1-hop) neighbourhood of node i : $\mathcal{N}_{i}=\{j \mid(i, j) \in \mathcal{E} \vee(j, i) \in \mathcal{E}\}$
- Neighbourhood features: $\mathbf{X}_{\mathcal{N}_{i}}=\left\{\left\{\mathbf{x}_{j} \mid j \in \mathcal{N}_{i}\right\}\right\}$
- Permutation matrix: a $|\mathcal{V}| \times|\mathcal{V}|$ binary matrix that has exactly one entry of 1 in every row and column, and 0s elsewhere: $\mathbf{P}=\left[\begin{array}{lll}\mathbf{e}_{\pi(1)} & \cdots & \mathbf{e}_{\pi(|\mathcal{V}|)}\end{array}\right]^{\top}$

3. Learning on sets:

- $f(\mathbf{X})$ is permutation invariant if for all permutation matrices $\mathbf{P}: f(\mathbf{P X})=f(\mathbf{X})$
- $\boldsymbol{F}(\mathbf{X})$ is permutataion equivariant if for all permutation matrices $\mathbf{P}: \boldsymbol{F}(\mathbf{P X})=\mathbf{P} \boldsymbol{F}(\mathbf{X})$
- Locality on sets: transform every node in isolation, through a shared function $\psi: \mathbf{h}_{i}=\psi\left(\mathbf{x}_{i}\right)$ Stacking \mathbf{h}_{i} into a matrix yields $\mathbf{H}=\boldsymbol{F}(\mathbf{X})$:

$$
\boldsymbol{F}(\mathbf{X})=\left[\begin{array}{ccc}
- & \psi\left(\mathbf{x}_{1}\right) & - \\
\vdots & \\
-\psi\left(\mathbf{x}_{|\mathcal{V}|}\right) & -
\end{array}\right]
$$

- Deep Sets (Zaheer et al., NIPS 2017):

$$
f(\mathbf{X})=\phi\left(\bigoplus_{i \in \mathcal{V}} \psi\left(\mathbf{x}_{i}\right)\right)
$$

Universality of Deep Sets: any permutation invariant model can be expressed as a Deep Sets
4. Learning on graphs:

- $f(\mathbf{X})$ is permutation invariant if for all permutation matrices $\mathbf{P}: f\left(\mathbf{P X}, \mathbf{P A} \mathbf{P}^{\top}\right)=f(\mathbf{X}, \mathbf{A})$
- $\boldsymbol{F}(\mathbf{X})$ is permutataion equivariant if for all permutation matrices $\mathbf{P}: \boldsymbol{F}\left(\mathbf{P X}, \mathbf{P A P}{ }^{\top}\right)=\mathbf{P} \boldsymbol{F}(\mathbf{X}, \mathbf{A})$
- Locality on graphs: apply a local function ϕ over all neighbourhoods:

$$
\boldsymbol{F}(\mathbf{X}, \mathbf{A})=\left[\begin{array}{ccc}
- & \phi\left(\mathbf{x}_{1}, \mathbf{X}_{\mathcal{N}_{1}}\right) & - \\
\vdots & \\
- & \phi\left(\mathbf{x}_{|\mathcal{V}|}, \mathbf{X}_{\mathcal{N}_{|\mathcal{V}|}}\right) & -
\end{array}\right]
$$

To ensure permutation equivariance, it is sufficient that ϕ is permutation invariant in $\mathbf{X}_{\mathcal{N}_{i}}$

3 Graph Neural Networks

1. Graph Networks (Battaglia et al., 2018):

Data flow:

- Update edge features (using relevant nodes + graph)

$$
\mathbf{h}_{u v}=\psi\left(\mathbf{x}_{u}, \mathbf{x}_{v}, \mathbf{x}_{u v}, \mathbf{x}_{\mathcal{G}}\right)
$$

- Update node features (using updated relevant edges + graph)

$$
\mathbf{h}_{u}=\phi\left(\mathbf{x}_{u}, \bigoplus_{u \in \mathcal{N}_{v}} \mathbf{h}_{u v}, \mathbf{x}_{\mathcal{G}}\right)
$$

- Update graph features (using updated nodes + edges)

$$
\mathbf{h}_{\mathcal{G}}=\rho\left(\bigoplus_{u \in \mathcal{V}} \mathbf{h}_{u}, \bigoplus_{(u, v) \in \mathcal{E}} \mathbf{h}_{u v}, \mathbf{x}_{\mathcal{G}}\right)
$$

Visualisation (equivariant and invariant layers):

2. Three flavours of GNN layers:

(a) Convolutional

(b) Attentional

(c) Message-passing $\mathbf{h}_{i}=\phi\left(\mathbf{x}_{i}, \bigoplus_{j \in \mathcal{N}_{i}} c_{i j} \psi\left(\mathbf{x}_{j}\right)\right) \quad \mathbf{h}_{i}=\phi\left(\mathbf{x}_{i}, \bigoplus_{j \in \mathcal{N}_{i}} a\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \psi\left(\mathbf{x}_{j}\right)\right) \quad \mathbf{h}_{i}=\phi\left(\mathbf{x}_{i}, \bigoplus_{j \in \mathcal{N}_{i}} \psi\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)$
3. Convolutional GNNs:

- Graph Convolutional Network (GCN; Kipf \& Welling, ICLR 2017):

$$
\mathbf{H}=\sigma\left(\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X} \mathbf{W}\right)
$$

where $\tilde{\mathbf{A}}=\mathbf{A}+\mathbf{I}$, and $\tilde{\mathbf{D}}$ is the corresponding degree matrix of $\tilde{\mathbf{A}}$

- Simplified Graph Convolution (SGC; Wu et al., ICML 2019):

$$
\mathbf{H}=\operatorname{Softmax}\left(\left(\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}}\right)^{K} \mathbf{X W}\right)
$$

Near state-of-the-art on many tasks of interest, and very efficient to train

- Chebyshev Networks (ChebyNet; Defferrard et al., NIPS 2016):

$$
\mathbf{H}=\sigma\left(\sum_{k=0}^{K} \alpha_{k}\left(\frac{2}{\lambda_{\max }} \mathbf{L}_{\mathrm{sym}}-\mathbf{I}\right)^{k} \mathbf{X} \mathbf{W}_{k}\right)
$$

where

- $\lambda_{\text {max }}$ is the largest eigenvalue of $\mathbf{L}_{\text {sym }}$
- α_{k} is the order- k coefficient of its Chebyshev polynomial GCN can be interpreted as a ChebyNet with $K=1$ and $\lambda_{\max } \approx 2$

Appendix: Mathematical Notations

a	A scalar (integer or real)
\mathbf{a}	A vector
\mathbf{A}	A matrix
\mathcal{A} or $\{\cdot\}$	A set
$\{\{\cdot\}\}$	A multiset
$\|\mathcal{A}\|$	Cardinality of set \mathcal{A}
\mathbb{R}	The set of real numbers
a_{i}	Element i of vector a, with indexing starting at 1
$A_{i j}$	Element i, j of matrix A, with indexing starting at 1
f	A function
\boldsymbol{F}	A matrix-valued function
π	A permutation
ϕ, ψ, ρ, \cdots	Learnable functions (e.g., MLPs)
σ	A non-linear activation function (e.g., sigmoid, ReLU)
\oplus	A permutation-invariant operator (e.g., sum, mean, min, max)

