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1 Primer on Graph Representations
1. Mathematical definition of graphs:

A graph G = (V, E) is a collection of nodes V and edges E ⊆ V × V
The edges can be represented by an adjacency matrix,A ∈ R|V|×|V|, such that

Auv =

{
1 if (u, v) ∈ E
0 otherwise

2. Some interesting graph types:
• Undirected: ∀u, v ∈ V. (u, v) ∈ E ⇐⇒ (u, v) ∈ E (i.e., A> = A)
• Weighted: provided edge weight wuv for every edge (u, v) ∈ E
• Multirelational: various edge types, i.e. (u, t, v) ∈ E if there exists an edge (u, v) linked by type t
• Heterogeneous: various node types

3. Machine learning tasks on graphs by domain:
• Transductive: training algorithm sees all observations, including the holdout observations

– Task is to propagate labels from the training observations to the holdout observations
– Also called semi-supervised learning

• Inductive: training algorithm only sees the training observations during training, and only
sees the holdout observations for prediction

4. Node statistics:
• Degree: amount of edges the node is incident to:

du =
∑
v∈V

Auv

• Centrality: ameasure of how “central” the node is in the graph: howoften do infinite random
walks visit the node?

du = λ−1
∑
v∈V

Auvev

where e ∈ R|V| is the largest eigenvector of A, with corresponding eigenvalue λ
• Clustering coefficient: a measure of “clusteredness”: are neighbours connected amongst

each other?
cu =

∣∣{(v1, v2) ∈ E∣∣v1, v2 ∈ N (u)
}∣∣(

du
2

)
5. Graph Laplacian:

LetD be the diagonal (out)-degree matrix of the graph, i.e., Duu =
∑
v∈V Aij . Then:

• The unnormalised graph Laplacian: L = D−A

• The symmetric graph Laplacian: Lsym = D−
1
2LD−

1
2 = I−D−

1
2AD−

1
2

• The random walk graph Laplacian: LRW = D−1L = I−D−1A

Properties:
• For undirected graphs,L is symmetric (L> = L) and positive semi-definite (∀x ∈ R|V|.x>Lx ≥ 0)
• For undirected graphs:

∀x ∈ R|V|. x>Lx =
1

2

∑
u∈V

∑
v∈V

Auv(xu − xv)2 =
∑

(u,v)∈E

(xu − xv)2

• L has |V| nonnegative eigenvalues: λ1 ≥ · · · ≥ λ|V | = 0
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6. Spectral clustering:
• Two-way cut: partition the graph into A ⊆ V and its complement Ac ⊆ V :

Cut(A) =
∣∣{(u, v) ∈ E∣∣u ∈ A ∧ v ∈ Ac}∣∣

Ratio cut metric:
RCut(A) = Cut(A)

(
1

|A|
+

1

|Ac|

)
• Minimising RCut(A):

Let a ∈ R|V| be a vector representing the cut A, defined as follows:

au =


√
Ac

A if u ∈ A

−
√
A
Ac

if u ∈ Ac

Then
a>La =

∑
(u,v)∈E

(au − av)2 = |V|RCut(A)

Minimising a>La corresponds to minimising RCut(A) (NP-hard as the constraint is discrete)
• Relaxing: minimise a>La subject to a ⊥ 1 and ||a||2 = |V|

Rayleigh–Ritz Theorem: The solution is exactly the second-smallest eigenvector of L
To obtain the cut, place u into A or Ac depending on the sign of au

• Can be generalised to k-clustering

2 Permutation Invariance and Equivariance
1. Informal definitions:

• Permutation invariance: applying a permutation matrix does not modify the result
• Permutation equivariance: transformation preserves the node order
• Locality: signal remains stable under slight deformations of the domain

2. Setup:

• Node featurematrix: X =
[
x1 · · · x|V|

]> ∈ R|V|×k, where xi ∈ Rk is the features of node i
• (1-hop) neighbourhood of node i: Ni =

{
j
∣∣(i, j) ∈ E ∨ (j, i) ∈ E

}
• Neighbourhood features: XNi

= {{xj |j ∈ Ni}}
• Permutation matrix: a |V| × |V| binary matrix that has exactly one entry of 1 in every row

and column, and 0s elsewhere: P =
[
eπ(1) · · · eπ(|V|)

]>
3. Learning on sets:

• f(X) is permutation invariant if for all permutation matrices P: f(PX) = f(X)

• F (X) is permutataion equivariant if for all permutation matrices P: F (PX) = PF (X)

• Locality on sets: transform every node in isolation, through a shared function ψ: hi = ψ(xi)

Stacking hi into a matrix yields H = F (X):

F (X) =

— ψ(x1) ––
...

–– ψ(x|V|) ––


• Deep Sets (Zaheer et al., NIPS 2017):

f(X) = φ

(⊕
i∈V

ψ(xi)

)

Universality of Deep Sets: any permutation invariant model can be expressed as a Deep Sets
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4. Learning on graphs:
• f(X) is permutation invariant if for all permutation matrices P: f(PX,PAP>) = f(X,A)

• F (X) ispermutataion equivariant if for all permutationmatricesP: F (PX,PAP>) = PF (X,A)

• Locality on graphs: apply a local function φ over all neighbourhoods:

F (X,A) =

— φ(x1,XN1
) ––

...
–– φ(x|V|,XN|V|) ––


To ensure permutation equivariance, it is sufficient that φ is permutation invariant in XNi

3 Graph Neural Networks
1. Graph Networks (Battaglia et al., 2018):

Data flow:
• Update edge features (using relevant nodes + graph)

huv = ψ(xu,xv,xuv,xG)

• Update node features (using updated relevant edges + graph)

hu = φ

(
xu,

⊕
u∈Nv

huv,xG

)

• Update graph features (using updated nodes + edges)

hG = ρ

⊕
u∈V

hu,
⊕

(u,v)∈E

huv,xG


Visualisation (equivariant and invariant layers):

2. Three flavours of GNN layers:

(a) Convolutional (b) Attentional (c) Message-passing

hi = φ

xi,
⊕
j∈Ni

cijψ(xj)

 hi = φ

xi,
⊕
j∈Ni

a(xi,xj)ψ(xj)

 hi = φ

xi,
⊕
j∈Ni

ψ(xi,xj)
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3. Convolutional GNNs:
• Graph Convolutional Network (GCN; Kipf & Welling, ICLR 2017):

H = σ
(
D̃−

1
2 ÃD̃−

1
2XW

)
where Ã = A+ I, and D̃ is the corresponding degree matrix of Ã

• Simplified Graph Convolution (SGC; Wu et al., ICML 2019):

H = Softmax
((

D̃−
1
2 ÃD̃−

1
2

)K
XW

)
Near state-of-the-art on many tasks of interest, and very efficient to train

• Chebyshev Networks (ChebyNet; Defferrard et al., NIPS 2016):

H = σ

(
K∑
k=0

αk

(
2

λmax
Lsym − I

)k
XWk

)

where
– λmax is the largest eigenvalue of Lsym

– αk is the order-k coefficient of its Chebyshev polynomial
GCN can be interpreted as a ChebyNet withK = 1 and λmax ≈ 2
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https://papers.nips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf


Appendix: Mathematical Notations

a A scalar (integer or real)

a A vector

A A matrix

A or {·} A set

{{·}} A multiset

|A| Cardinality of set A

R The set of real numbers

ai Element i of vector a, with indexing starting at 1

Aij Element i, j of matrix A, with indexing starting at 1

f A function

F A matrix-valued function

π A permutation

φ, ψ, ρ, · · · Learnable functions (e.g., MLPs)

σ A non-linear activation function (e.g., sigmoid, ReLU)

⊕ A permutation-invariant operator (e.g., sum, mean, min, max)
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