Discrete Mathematics
 CST Part IA Paper 2

Victor Zhao
xz398@cam.ac.uk

1 Proof

1. Some mathematical jargon:

- Statement: A sentence that is either true or false - but not both.
- Predicate: A statement whose truth depends on the value of one or more variables.
- Theorem: A very important true statement.
- Proposition: A less important but nonetheless interesting true statement.
- Lemma: A true statement used in proving other true statements.
- Corollary: A true statement that is a simple deduction from a theorem or proposition.
- Conjecture: A statement believed to be true, but for which we have no proof.
- Proof: Logical explanation of why a statement is true; a method for establishing truth.
- Logic: The study of methods and principles used to distinguish good (correct) from bad (incorrect) reasoning.
- Axiom: A basic assumption about a mathematical situation. Axioms can be considered facts that do not need to be proved (just to get us going in a subject) or they can be used in definitions.
- Definition: An explanation of the mathematical meaning of a word (or phrase). The word (or phrase) is generally defined in terms of properties.
- A statement is simple (or atomic) when it cannot be broken into other statements, and it is composite when it is built by using several (simple or composite statements) connected by logical expressions

2. Contraposition:

The contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
3. Modus Ponens: If P and $P \Longrightarrow Q$ holds then so does Q.

$$
\begin{gathered}
P \quad P \Longrightarrow Q \\
\hline Q
\end{gathered}
$$

4. Some notations:

- Implication: \Longrightarrow
- Bi-implication: \Longleftrightarrow
- Universal quantification: $\forall x . P(x)$
- Existential quantification: $\exists x \cdot P(x)$
- Unique existence: \exists ! $x \cdot P(x)$

$$
\exists!x \cdot P(x) \Longleftrightarrow \exists x \cdot P(x) \wedge(\forall y \cdot \forall z \cdot(P(y) \wedge P(z)) \Longrightarrow y=z)
$$

- Conjunction: \wedge
- Disjunction: \vee
- Negation: $ᄀ$

5. Equality axioms:

- Every individual is equal to itself.

$$
\forall x \cdot x=x
$$

- (Leibniz equality) For any pair of equal individuals, if a property holds for one of them, then ait also holds for the other one.

$$
\forall x \cdot \forall y \cdot x=y \Longrightarrow(P(x) \Longrightarrow P(y))
$$

2 Numbers

1. Definitions of real numbers. A real number is:

- rational if it is of the form $\frac{m}{n}$ for a pair of integers m and n; otherwise it is irrational;
- positive if it is greater than 0 , and negative if it is smaller than 0 ;
- nonnegative if it is greater than or equal to 0 , and nonpositive if it is smaller than or equal to 0 ;
- natural if it is a nonnegative integer.

2. Additive structure $(\mathbb{N}, 0,+)$ of natural numbers with zero and addition is a commutative monoid (a monoid is a semigroup with an identity element; a semigroup preserves closure and associativity):

- Monoid laws:

$$
\begin{aligned}
0+n & =n+0=n & & (\text { identity }) \\
(l+m)+n & =l+(m+n) & & (\text { associativity })
\end{aligned}
$$

- Commutativity law:

$$
m+n=n+m
$$

3. Multiplicative structure $(\mathbb{N}, 1, \cdot)$ of natural numbers with one and multiplication is a commutative monoid:

- Monoid laws:

$$
\begin{gathered}
1 \cdot n=n \cdot 1=n \\
(l \cdot m) \cdot n=l \cdot(m \cdot n)
\end{gathered}
$$

- Commutativity law:

$$
m \cdot n=n \cdot m
$$

4. The overall structure $(\mathbb{N}, 0,+, 1, \cdot)$ is a commutative semiring:

- ($\mathbb{N}, 0,+$) is a commutative monoid;
- ($\mathbb{N}, 1, \cdot)$ is a monoid;
- Multiplication is distributive over addition:

$$
l \cdot(m+n)=l \cdot m+l \cdot n
$$

- Multiplication by 0 annihilates \mathbb{N} :

$$
0 \cdot n=n \cdot 0=0
$$

5. Cancellation:

- Additive cancellation: for all natural numbers k, m, n,

$$
k+m=k+n \Longrightarrow m=n
$$

- Multiplicative cancellation: for all natural numbers k, m, n,

$$
\text { if } k \neq 0 \text { then } k \cdot m=k \cdot n \Longrightarrow m=n
$$

6. Inverses:

- A number x is said to admit an additive inverse whenever there exists a number y such that $x+y=0$;
- A number x is said to admit an multiplicative inverse whenever there exists a number y such that $x \cdot y=1$.

7. The integers \mathbb{Z} form a commutative ring, and the rationals \mathbb{Q} form a field:

- A group is a monoid in which every element has an inverse;
- A ring is a semiring $(0,+),(1, \cdot)$ where $(0,+)$ is a commutative group. It is commutative if $(1, \cdot)$ is also commutative;
- A field is a ring where every non-zero element has a multiplicative inverse.

8. Divisibility and congruence:

- Let d and n be integers. We say that d devides n, and write $d \mid n$, whenever there exists an integer k such that $n=k \cdot d$;
- Fix a positive integer m. For integers a and b, we say that a is congruent to b modulo m, and write $a \equiv b(\bmod m)$, whenever $m \mid(a-b)$.

9. For all prime numbers p and integers $0 \leq m \leq p$, either $\binom{p}{m} \equiv 0(\bmod p)$ or $\binom{p}{m} \equiv 1(\bmod p)$. For $0<m<p, p \left\lvert\,\binom{ p}{m}\right.$ and $(p-m) \left\lvert\,\binom{ p-1}{m}\right.$.
10. The Freshman's Dream: For all natural numbers m, n and primes p,

$$
(m+n)^{p} \equiv m^{p}+n^{p}(\bmod p)
$$

11. The Dropout Lemma: For all natural numbers m and primes p,

$$
(m+1)^{p} \equiv m^{p}+1(\bmod p)
$$

12. The Many Dropout Lemma: For all natural numbers m and i, and primes p,

$$
(m+i)^{p} \equiv m^{p}+i(\bmod p)
$$

13. Fermat's Little Theorem: For all natural numbers i and primes p,

- $i^{p} \equiv i(\bmod p)$, and
- $i^{p-1} \equiv 1(\bmod p)$ whenever i is not a multiple of p.

14. The Division Theorem: For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \geq 0,0 \leq r \leq n$, and $m=q \cdot n+r$.
15. Modular arithmetic: For all natural numbers $m>1$, the modular-arithmetic structure

$$
\left(\mathbb{Z}_{m}, 0,+_{m}, 1, \cdot{ }_{m}\right)
$$

is a commutative ring.
For prime p, \mathbb{Z}_{p} is a field.
16. Greatest Common Divisor: For all positive integers m and n,

$$
\operatorname{gcd}(m, n)= \begin{cases}n & , \text { if } n \mid m \\ \operatorname{gcd}(n, \operatorname{rem}(m, n)) & , \text { otherwise }\end{cases}
$$

17. Some fundamental properties of gcds:

- Commutativity: $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m)$,
- Associativity: $\operatorname{gcd}(l, \operatorname{gcd}(m, n))=\operatorname{gcd}(\operatorname{gcd}(l, m), n)$,
- Distributivity: $\operatorname{gcd}(l \cdot m, l \cdot n)=l \cdot \operatorname{gcd}(m, n)$.

18. Theorem: For positive integers k, m, and n, if $k \mid(m \cdot n)$ and $\operatorname{gcd}(k, m)=1$ then $k \mid n$.

Corollary (Euclid's Theorem): For positive integers m, n, and prime p, if $p \mid(m \cdot n)$ then $p \mid m$ or $p \mid n$.
19. For all positive integers m and n,

- $n \cdot \mathrm{lc}_{2}(m, n) \equiv \operatorname{gcd}(m, n)(\bmod m)$, and
- whenever $\operatorname{gcd}(m, n)=1$,
$\left[{ }^{c} c_{2}(m, n)\right]_{m}$ is the multiplicative inverse of $[n]_{m}$ in \mathbb{Z}_{m}.

20. Principle of Induction:

Let $P(m)$ be a statement for m ranging over the natural numbers greater than or equal to a fixed natural number l. If

- $P(l)$ holds, and
- $\forall n \geq l$ in \mathbb{N}. $(P(n) \Longrightarrow P(n+1))$ also holds,
then
- $\forall m \geq l$ in $\mathbb{N} . P(m)$ holds.

21. Principle of Strong Induction:

Let $P(m)$ be a statement for m ranging over the natural numbers greater than or equal to a fixed natural number l. If

- $P(l)$ holds, and
- $\forall n \geq l$ in \mathbb{N}. $((\forall k \in[l . . n] . P(k)) \Longrightarrow P(n+1))$ also holds,
then
- $\forall m \geq l$ in $\mathbb{N} . P(m)$ holds.

22. Well-Founded Induction:

Definition: a well-founded relation is a binary relation \prec on a set A such that there are no infinite descending chains $\cdots \prec a_{i} \prec \cdots \prec a_{1} \prec a_{0}$. When $a \prec b$ we say a is a predecessor of b.
Principle of Well-Founded Induction: Let \prec be a well-founded relation on a set A. if

- $\forall a \in A .((\forall b \prec a . P(b)) \Longrightarrow P(a))$ holds,
then
- $\forall a \in A . P(a)$ holds.

23. Fundamental Theorem of Arithmetic: For every positive integer n there is a unique finite ordered sequence of primes $\left(p_{1} \leq \cdots \leq p_{l}\right)$ with $l \in \mathbb{N}$ such that

$$
n=\prod_{i=1}^{l} p_{i}
$$

3 Sets

1. Axioms:

- Extensionality axiom: Two sets are equal if they have the same elements.

$$
\forall \text { sets } A, B \cdot A=B \Longleftrightarrow(\forall x \cdot x \in A \Longleftrightarrow x \in B)
$$

- Powerset axiom: For any set, there is a set consisting of all its subsets.
- Pairing axiom: For every a and b, there is a set with a and b as its only elements.
- Union axiom: Every collection of sets has a union.
- Infinity axiom: There is an infinite set, containing \emptyset and closed under successor. (Succ $\left.(x)=_{\text {def }} x \cup\{x\}\right)$
- Axiom of choice: Every surjection has a section (right inverse).
- Replacement axiom: The direct image of every definable functional property on a set is a set.

2. Cardinality:

- \forall finite set $U \cdot \# \mathcal{P}(U)=2^{\# U}$
- \forall sets $A, B \cdot \#(A \times B)=\# A \times \# B$
- \forall sets $A, B \cdot \#(A \uplus B)=\# A+\# B$

3. Subsets:

$$
\begin{gathered}
A \subseteq B \Longleftrightarrow(\forall x \cdot x \in A \Longrightarrow x \in B) \\
A \subset B \Longleftrightarrow(A \subseteq B \wedge A \neq B)
\end{gathered}
$$

Reflexivity: \forall set $A . A \subseteq A$
Transitivity: \forall set $A, B, \bar{C} .(A \subseteq B \wedge B \subseteq C) \Longrightarrow A \subseteq C$
Antisymmetry: \forall set $A, B .(A \subseteq B \wedge B \subseteq A) \Longrightarrow A=B$
4. Separation principle: For any set A and any definable property P, there is a set containing precisely those elements of A for which the property P holds.

$$
\{x \in A \mid P(x)\}
$$

5. The powerset Boolean algebra: $\left(\mathcal{P}(U), \emptyset, U, \cup, \cap,(\cdot)^{c}\right)$

- For all $A, B \in \mathcal{P}(U)$,

$$
\begin{gathered}
A \cup B=\{x \in U \mid x \in A \vee x \in B\} \in \mathcal{P}(U) \\
A \cap B=\{x \in U \mid x \in A \wedge x \in B\} \in \mathcal{P}(U) \\
A^{c}=\{x \in U \mid \neg(x \in A)\} \in \mathcal{P}(U)
\end{gathered}
$$

- The union operateion \cup and the intersection operation \cap are associative, commutative, and idempotent:

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C), A \cup B=B \cup A, A \cup A=A \\
& (A \cap B) \cap C=A \cap(B \cap C), A \cap B=B \cap A, A \cap A=A
\end{aligned}
$$

- The empty set \emptyset is a neutral element for \cup and the universal set U is a neutral element for \cap :

$$
\emptyset \cup A=U \cap A=A
$$

- The empty set \emptyset is an annihilator for \cap and the universal set U is an annihilator for \cup :

$$
\begin{gathered}
\emptyset \cap A=\emptyset \\
U \cup A=U
\end{gathered}
$$

- With respect to each other, the union operation \cup and the intersection operation \cap are distributive and absorptive:

$$
\begin{gathered}
A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
A \cup(A \cap B)=A \cap(A \cup B)=A
\end{gathered}
$$

- The complement operation $(\cdot)^{c}$ satisfies complementation laws:

$$
A \cup A^{c}=U, A \cap A^{c}=\emptyset
$$

6. Ordered pair: $\langle a, b\rangle={ }_{\operatorname{def}}\{\{a\},\{a, b\}\}$

Fundamental property or ordered pairing:

$$
\forall a, b, x, y \cdot\langle a, b\rangle=\langle x, y\rangle \Longleftrightarrow(a=x \wedge b=y)
$$

7. Big Unions: Let U be a set. For a collection of sets $\mathcal{F} \in \mathcal{P}(\mathcal{P}(U)$) (i.e. $\mathcal{F} \subseteq \mathcal{P}(U)$),

$$
\bigcup \mathcal{F}=_{\operatorname{def}}\{x \in U \mid \exists A \in \mathcal{F} . x \in A\} \in \mathcal{P}(U)
$$

Idea:

$$
\bigcup\left\{A_{1}, A_{2}, \cdots\right\}=\left(A_{1} \cup A_{2} \cup \cdots\right) \subseteq U
$$

8. Big Intersections: Let U be a set. For a collection of sets $\mathcal{F} \in \mathcal{P}(\mathcal{P}(U))$ (i.e. $\mathcal{F} \subseteq \mathcal{P}(U)$),

$$
\bigcap \mathcal{F}={ }_{\operatorname{def}}\{x \in U \mid \forall A \in \mathcal{F} . x \in A\} \in \mathcal{P}(U)
$$

Idea:

$$
\bigcap\left\{A_{1}, A_{2}, \cdots\right\}=\left(A_{1} \cap A_{2} \cap \cdots\right) \subseteq U
$$

9. Tagging: $\{l\} \times A$
10. Disjoint Unions: $A \uplus B==_{\operatorname{def}}(\{1\} \times A) \cup(\{2\} \times B)$

$$
\forall x \cdot x \in(A \uplus B) \Longleftrightarrow(\exists a \in A \cdot x=(1, a)) \vee(\exists b \in B \cdot x=(2, b))
$$

4 Relations

1. Some notations and definitions:

- Relation: \rightarrow

For all finite sets A and $B, \# \operatorname{Rel}(A, B)=2^{\# A \cdot \# B}$

- Partial function: Set of partial functions: \rightleftharpoons
Every partial function $f: A \rightharpoonup B$ satisfies that: for each element a of A there is at most one element b of B such that $a f b$.

$$
\forall f \in \operatorname{Rel}(A, B) . f \in(A \rightharpoonup B) \Longleftrightarrow \forall a \in A . \forall b_{1}, b_{2} \in B . a f b_{1} \wedge a f b_{2} \Longrightarrow b_{1}=b_{2}
$$

For all finite sets A and $B, \#(A \rightharpoonup B)=(\# B+1)^{\# A}$

- Mapping: \mapsto
- Function: \rightarrow

Set of functions: \Rightarrow
A partial function is total if its domain of definition coincides with its source.

$$
\begin{aligned}
& \forall f \in(A \Rightarrow B) . f \in(A \Rightarrow B) \Longleftrightarrow \forall a \in A . \exists b \in B . a f b \\
& \forall f \in \operatorname{Rel}(A, B) . f \in(A \Rightarrow B) \Longleftrightarrow \forall a \in A . \exists!b \in B . a f b
\end{aligned}
$$

For all finite sets A and $B, \#(A \Rightarrow B)=\# B^{\# A}$

- Injection: \rightarrow

A function $f: A \rightarrow B$ is injective whenever

$$
\forall a_{1}, a_{2} \in A . f\left(a_{1}\right)=f\left(a_{2}\right) \Longrightarrow a_{1}=a_{2}
$$

- Surjection: \rightarrow

A function $f: A \rightarrow B$ is surjective whenever

$$
\forall b \in B . \exists a \in A . f(a)=b
$$

For all finite sets A and $B, \# \operatorname{Sur}(A, B)=$

- Bijection: A function $f: A \rightarrow B$ is bijective whenever there exists a (necessarily unique) function $g: B \rightarrow A$ (referred to as the inverse of f) such that

$$
g \circ f=\operatorname{id}_{A} \quad \text { and } \quad f \circ g=\operatorname{id}_{B}
$$

For all finite sets A and B,

$$
\# \operatorname{Bij}(A, B)= \begin{cases}0 & , \text { if } \# A \neq \# B \\ n! & , \text { if } \# A=\# B=n\end{cases}
$$

2. Composition:

Composition of two relations $R: A \rightarrow B$ and $S: B \rightarrow C$:

$$
S \circ R: A \nrightarrow C
$$

Relational composition is associative and has the identity relation as neutral element:

$$
\begin{gathered}
\forall R: A \mapsto B, S: B \mapsto C, T: C \nrightarrow D \cdot(T \circ S) \circ R=T \circ(S \circ R) \\
\forall R: A \nrightarrow B \cdot R \circ \operatorname{id}_{A}=\operatorname{id}_{B} \circ R=R
\end{gathered}
$$

$R^{\circ n}: R$ composed with itself n times.
$R^{\circ *}=\bigcup_{n \in \mathbb{N}} R^{\circ n}$
3. Preorders:

A preorder (P, \sqsubseteq) consists of a set P and a relation \sqsubseteq on P satisfying the following two axioms:

- Reflexivity: $\forall x \in P . x \sqsubseteq x$
- Transitivity: $\forall x, y, z \in P .(x \sqsubseteq y \wedge y \sqsubseteq z) \Longrightarrow x \sqsubseteq z$
$R^{\circ *}$ is the reflexive-transitive closure of R
$R^{\circ *}$ is the least preorder containing R
$R^{\circ *}$ is the preorder freely generated by R

4. Isomorphism: \cong

Two sets A and B are isomorphic (and have the same cardinality) whenever there is a bijection between them,
5. Equivalence relations:

A relation E on a set A is an equivalence relation whenever it is:

- Reflexive: $\forall x \in A . x E x$
- Symmetric: $\forall x, y \in A . x E y \Longrightarrow y E x$
- Transitive: $\forall x, y, z \in A$. $(x E y \wedge y E z) \Longrightarrow x E z$

6. Set partitions:

A partition P of a set A is a set of non-empty subsets of A (that is, $P \subseteq \mathcal{P}(A)$ and $\emptyset \notin P$), whose elements are typically referred to as blocks, such that

- The union of all blocks yields $A: \cup P=A$, and
- All blocks are pairwise disjoint: $\forall B_{1}, B_{2} \in P . B_{1} \neq B_{2} \Longrightarrow B_{1} \cap B_{2}=\emptyset$

For every set $A: \operatorname{EqRel}(A) \cong \operatorname{Part}(A)$
7. Enumerability:

A set A is enumerable whenever there exists a surjection $(\mathbb{N} \rightarrow A)$, or a injection $(A \hookrightarrow \mathbb{N})$, referred to as an enumeration.
A countable set is one that is either empty or enumerable.
8. Relational images and functional images:

Let $R: A \rightarrow B$ be a relation.

- The direct image of $X \subseteq A$ under R is the set $\vec{R}(X) \subseteq B$:

$$
\vec{R}(X)=\{b \in B \mid \exists x \in X . x R b\}
$$

This construction yields a function $\vec{R}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$.

- The inverse image of $Y \subseteq B$ under R is the set $\overleftarrow{R}(X) \subseteq A$:

$$
\overleftarrow{R}(Y)=\{a \in A \mid \forall b \in B \cdot a R b \Longrightarrow b \in Y\}
$$

This construction yields a function $\overleftarrow{R}(Y): \mathcal{P}(B) \rightarrow \mathcal{P}(A)$
Let $f: A \rightarrow B$ be a function.

- For all $X \subseteq A, \vec{f}(X)=\{b \in B \mid \exists a \in X . f(a)=b\}$;
- For all $Y \subseteq B, \overleftarrow{f}(Y)=\{a \in A \mid f(a) \in Y\}$

