Introduction to Probability
 CST Part IA Paper 1

Victor Zhao
xz398@cantab.ac.uk

1 Prerequisites and Introduction

1. Combinatorics:

Counting tasks on n objects			
Permutations (sort objects)	Combinations (choose r objects)		
Distinct	Indistinct	Distinct 1 group	Distinct k groups
$n!$	$\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}$	$\binom{n}{r}=\frac{n!}{r!(n-r)!}$	$\binom{n}{n_{1}, n_{2}, \cdots, n_{k}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}$

Pascal's identity: $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r} \quad(1 \leq r \leq n)$
Binomial theorem: $(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r}$
2. Probability axioms:

Axiom 1: For any event $E, 0 \leq \mathbb{P}[E] \leq 1$
Axiom 2: Probability of the sample space S is $\mathbb{P}[S]=1$
Axiom 3: If E and F are mutually exclusive (i.e., $E \cap F=\varnothing$), then $\mathbb{P}[E \cup F]=\mathbb{P}[E]+\mathbb{P}[F]$ In general, for all mutually exclusive events E_{1}, E_{2}, \cdots,

$$
\mathbb{P}\left[\bigcup_{i=1}^{\infty} E_{i}\right]=\sum_{i=1}^{\infty} \mathbb{P}\left[E_{i}\right]
$$

3. General inclusion-exclusion principle: $\mathbb{P}\left[\bigcup_{i=1}^{n} E_{i}\right]=\sum_{r=1}^{n}(-1)^{r+1}\left(\sum_{i_{1}<\cdots<i_{r}}^{n} \mathbb{P}\left[E_{i_{1}} \cap \cdots \cap E_{i_{r}}\right]\right)$

Case $n=2: \mathbb{P}[E \cup F]=\mathbb{P}[E]+\mathbb{P}[F]-\mathbb{P}[E \cap F]$
4. Union bound (Boole's inequality): For any events $E_{1}, E_{2}, \cdots, E_{n}$,

$$
\mathbb{P}\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \mathbb{P}\left[E_{i}\right]
$$

5. Conditional probability (original and conditioning on event G):

Chain rule:

$$
\mathbb{P}[E F]=\mathbb{P}[E \mid F] \mathbb{P}[F] \quad \mathbb{P}[E F \mid G]=\mathbb{P}[E \mid F G] \mathbb{P}[F \mid G]
$$

Multiplication rule:

$$
\begin{aligned}
& \mathbb{P}\left[E_{1} E_{2} \cdots E_{n}\right]=\mathbb{P}\left[E_{1}\right] \mathbb{P}\left[E_{2} \mid E_{1}\right] \cdots\left[E_{n} \mid E_{1} \cdots E_{n-1}\right] \\
& \mathbb{P}\left[E_{1} E_{2} \cdots E_{n} \mid G\right]=\mathbb{P}\left[E_{1} \mid G\right] \mathbb{P}\left[E_{2} \mid E_{1} G\right] \cdots\left[E_{n} \mid E_{1} \cdots E_{n-1} G\right]
\end{aligned}
$$

Independence of E and F :

$$
\begin{array}{ll}
\mathbb{P}[E F]=\mathbb{P}[E] \mathbb{P}[F] & \mathbb{P}[E F \mid G]=\mathbb{P}[E \mid G] \mathbb{P}[F \mid G] \\
\mathbb{P}[E \mid F]=\mathbb{P}[E] & \mathbb{P}[E \mid F G]=\mathbb{P}[E \mid G]
\end{array}
$$

Law of total probability:

$$
\begin{aligned}
& \mathbb{P}[E]=\mathbb{P}[E F]+\mathbb{P}\left[E F^{\complement}\right]=\mathbb{P}[E \mid F] \mathbb{P}[F]+\mathbb{P}\left[E \mid F^{\complement}\right] \mathbb{P}\left[F^{\complement}\right] \\
& \mathbb{P}[E \mid G]=\mathbb{P}[E F \mid G]+\mathbb{P}\left[E F^{\complement} \mid G\right]=\mathbb{P}[E \mid F G] \mathbb{P}[F \mid G]+\mathbb{P}\left[E \mid F^{\complement} G\right] \mathbb{P}\left[F^{\complement} \mid G\right]
\end{aligned}
$$

In general, for disjoint events $F_{1}, F_{2}, \cdots, F_{n}$ such that $F_{1} \cup \cdots \cup F_{n}=S$,

$$
\mathbb{P}[E]=\sum_{i=1}^{n} \mathbb{P}\left[E \mid F_{i}\right] \mathbb{P}\left[F_{i}\right] \quad \mathbb{P}[E \mid G]=\sum_{i=1}^{n} \mathbb{P}\left[E \mid F_{i} G\right] \mathbb{P}\left[F_{i} \mid G\right]
$$

Bayes' theorem:

$$
\mathbb{P}[F \mid E]=\frac{\mathbb{P}[E \mid F] \mathbb{P}[F]}{\mathbb{P}[E]} \quad \mathbb{P}[F \mid E G]=\frac{\mathbb{P}[E \mid F G] \mathbb{P}[F \mid G]}{\mathbb{P}[E \mid G]}
$$

6. Confusion matrix:

		Actual condition	
	Total population	Positive F	Negative $F^{\text {C }}$
Predicted condition	Positive E	True positive $\mathbb{P}[E \mid F]$	False positive $\mathbb{P}\left[E \mid F^{\mathrm{C}}\right]$
	Negative $E^{\text {C }}$	False negative $\mathbb{P}\left[E^{\complement} \mid F\right]$	True negative $\mathbb{P}\left[E^{\text {С }} \mid F^{\complement}\right]$

2 Random Variables

1. Probability distribution functions:

Discrete random variable X :

- Probability mass function (PMF): $p(x)$
- Compute probability:

$$
\begin{aligned}
& \mathbb{P}[X=a]=p(x) \\
& \mathbb{P}[a \leq X \leq b]=\sum_{x=a}^{b} p(x)
\end{aligned}
$$

- Cumulative distribution function (CDF):

$$
F_{X}(a)=\mathbb{P}[X \leq a]=\sum_{x \leq a} p(x)
$$

2. Expectation:

Discrete random variable X :

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{x} x p(x) \\
& \mathbb{E}[g(X)]=\sum_{x} g(x) p(x)
\end{aligned}
$$

Continuous random variable X :

- Probability density function (PDF): $f(x)$
- Compute probability:

$$
\begin{aligned}
& \mathbb{P}[X=a]=0 \\
& \mathbb{P}[a \leq X \leq b]=\int_{a}^{b} f(x) d x
\end{aligned}
$$

- Cumulative distribution function (CDF):

$$
F_{X}(a)=\mathbb{P}[X \leq a]=\int_{-\infty}^{a} f(x) d x
$$

Linearity of expectation: $\mathbb{E}[a X+b]=a \mathbb{E}[X]+b$
Additivity of expectation: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
3. Variance: $\mathbb{V}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Scaling of variance: $\mathbb{V}[a X+b]=a^{2} \mathbb{V}[X]$
Standard deviation: $\operatorname{SD}[X]=\sqrt{\mathbb{V}[X]}$
Scaling of standard deviation: $\mathbb{S D}[a X+b]=|a| \mathbb{S D}[X]$
4. Discrete distributions:

Bernoulli $\operatorname{Ber}(p): 1$ experiment with success probability p

$$
\mathbb{P}[X=1]=p \quad \mathbb{E}[X]=p \quad \mathbb{V}[X]=p(1-p)
$$

Binomial $\operatorname{Bin}(n, p): n$ independent trials with success probability p

$$
\mathbb{P}[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \mathbb{E}[X]=n p \quad \mathbb{V}[X]=n p(1-p)
$$

Poisson $\operatorname{Pois}(\lambda)$: \# successes over experiment duration, with success rate $\lambda=n p$

$$
\mathbb{P}[X=k]=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad \mathbb{E}[X]=\lambda \quad \mathbb{V}[X]=\lambda
$$

Geometric $\operatorname{Geo}(p)$: \# independent trials until first success, with success probability p

$$
\mathbb{P}[X=n]=(1-p)^{n-1} p \quad \mathbb{E}[X]=\frac{1}{p} \quad \mathbb{V}[X]=\frac{1-p}{p^{2}}
$$

Negative binomial $\operatorname{NegBin}(r, p)$: \# independent trials until r success, with success probability p

$$
\mathbb{P}[X=n]=\binom{n-1}{r-1}(1-p)^{n-r} p^{r} \quad \mathbb{E}[X]=\frac{r}{p} \quad \mathbb{V}[X]=\frac{r(1-p)}{p^{2}}
$$

Hypergeometric $\operatorname{Hyp}(N, n, m)$: \# objects with a feature in a sample of size n (without replacement) from a population of size N that contains m items with the feature

$$
\mathbb{P}[X=n]=\frac{\binom{m}{i}\binom{N-m}{n-i}}{\binom{N}{n}} \quad \mathbb{E}[X]=n \frac{m}{N} \quad \mathbb{V}[X]=n \frac{m}{N}\left(1-\frac{m}{N}\right)\left(1-\frac{n-1}{N-1}\right)
$$

5. Continuous distributions:

Uniform Uni (α, β) : equal probability within range $[\alpha, \beta]$

$$
\begin{array}{ll}
\text { PDF: } f(x)= \begin{cases}\frac{1}{\beta-\alpha} & \text { when } \alpha \leq x \leq \beta \\
0 & \text { otherwise }\end{cases} & \text { CDF: } F(x)= \begin{cases}0 & \text { when } x<\alpha \\
\frac{x-\alpha}{\beta-\alpha} & \text { when } \alpha \leq x \leq \beta \\
1 & \text { when } x>\beta\end{cases} \\
\mathbb{E}[X]=\frac{\alpha+\beta}{2} & \mathbb{V}[X]=\frac{(\beta-\alpha)^{2}}{12}
\end{array}
$$

Exponential $\operatorname{Exp}(\lambda)$: time until first success occurs, with success rate λ

$$
\begin{array}{ll}
\text { PDF: } f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { when } x \geq 0 \\
0 & \text { otherwise }\end{cases} & \text { CDF: } F(x)=1-e^{-\lambda x} \\
\mathbb{E}[X]=\frac{1}{\lambda} & \mathbb{V}[X]=\frac{1}{\lambda^{2}}
\end{array}
$$

Normal (Gaussian) $\mathcal{N}\left(\mu, \sigma^{2}\right)$: mean μ, variance σ^{2}

$$
\begin{array}{ll}
\text { PDF: } f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(x-\mu^{2}\right)}{2 \sigma^{2}}} & \text { CDF: } F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right) \\
\mathbb{E}[X]=\mu & \mathbb{V}[X]=\sigma^{2} \\
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \Longrightarrow a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right) & \\
X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right), Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right) \Longrightarrow X+Y \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)
\end{array}
$$

6. Continuity correction:

Discrete Continuous

$$
\begin{aligned}
& \mathbb{P}[X=a] \\
& \mathbb{P}[X>a] \\
& \mathbb{P}[X \geq a] \\
& \mathbb{P}[X<a][\mathbb{P}[X \geq a+0.5 \leq X \leq a+0.5] \\
& \mathbb{P}[X \leq a]
\end{aligned}
$$

7. Joint probability mass function (for discrete RVs): $p_{X, Y}(a, b)=\mathbb{P}[X=a, Y=b]$

Joint distribution function (for discrete or continuous RVs): $F_{X, Y}(a, b)=\mathbb{P}[X \leq a, Y \leq b]$ Joint probability density f and joint continuous distribution F (for continuous RVs):

$$
\begin{aligned}
& F(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f(x, y) d x d y \quad f(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y) \\
& \mathbb{P}\left[a_{1} \leq X \leq b_{1}, a_{2} \leq Y \leq b_{2}\right]=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(x, y) d x d y
\end{aligned}
$$

Marginal distribution: $F_{X}(a)=\mathbb{P}[X \leq a]=\lim _{b \rightarrow \infty} F_{X, Y}(a, b)$
8. Covariance: $\operatorname{Cov}[X, Y]=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$

Covariance of linear combinations:

$$
\begin{array}{ll}
\operatorname{Cov}[X, a]=0 & \operatorname{Cov}[X, X]=\mathbb{V}[X] \\
\operatorname{Cov}[a X, b Y]=a b \operatorname{Cov}[X, Y] & \operatorname{Cov}[X+a, Y+b]=\operatorname{Cov}[X, Y]
\end{array}
$$

Variance of sum: $\mathbb{V}[X+Y]=\mathbb{V}[X]+\mathbb{V}[Y]+2 \operatorname{Cov}[X, Y]$
In general, for any random variables $X_{1}, X_{2}, \cdots, X_{n}$:

$$
\mathbb{V}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{V}\left[X_{i}\right]+2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Cov}\left[X_{i}, X_{j}\right]
$$

Correlation coefficient: $\rho(X, Y)=\frac{\operatorname{Cov}[X, Y]}{\sqrt{\mathbb{V}[X] \mathbb{V}[Y]}} \in[-1,1] \quad(\rho(X, Y)=0$ if $\mathbb{V}[X]=0$ or $\mathbb{V}[Y]=0)$
Scaling-invariance of correlation coefficient: $\rho(a X, b Y)=\rho(X, Y)$

3 Moments and Limit Theorems

1. Markov's inequality: for any non-negative random variable X with finite $\mathbb{E}[X]$, for any $a>0$,

$$
\mathbb{P}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}
$$

Let $a=\delta \cdot \mathbb{E}[X]$ (where $\delta>0$), then the inequality can be rewritten as

$$
\mathbb{P}[X \geq \delta \cdot \mathbb{E}[X]] \leq \frac{1}{\delta}
$$

2. Chebyshev's inequality: for any random variable X with finite $\mathbb{E}[X]$ and $\mathbb{V}[X]$, for any $a>0$,

$$
\mathbb{P}[|X-\mathbb{E}[X]| \geq a] \leq \frac{\mathbb{V}[X]}{a^{2}}
$$

Let $a=\sqrt{\delta \cdot \mathbb{V}[X]}$ (where $\delta>0)$, then the inequality can be rewritten as

$$
\mathbb{P}[|X-\mathbb{E}[X]| \geq \sqrt{\delta \cdot \mathbb{V}[X]}] \leq \frac{1}{\delta}
$$

3. Weak law of large numbers: let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, where X_{i} 's are independent and identically distributed (i.i.d.) with finite expectation μ and finite variance σ^{2}. Then, for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\left|\bar{X}_{n}-\mu\right|>\epsilon\right]=0
$$

Strong law of large numbers:

$$
\mathbb{P}\left[\lim _{n \rightarrow \infty} \bar{X}_{n}=\mu\right]=1
$$

4. Central limit theorem: let $X_{1}, X_{2}, \cdots, X_{n}$ be any sequence of i.i.d. random variables with finite expectation μ and finite variance σ^{2}. Let

$$
Z_{n}=\sqrt{n} \cdot \frac{\bar{X}_{n}-\mu}{\sigma}=\frac{1}{\sigma \sqrt{n}}\left(\sum_{i=1}^{n} X_{i}-n \mu\right)
$$

Then for any number $a \in \mathbb{R}$, it holds that

$$
\lim _{n \rightarrow \infty} F_{Z_{n}}(a)=\Phi(a)=\frac{1}{2 \pi} \int_{-\infty}^{a} e^{-\frac{x^{2}}{2}} d x
$$

where Φ is the CDF of the standard normal distribution $\mathcal{N}(0,1)$.

4 Applications and Statistics

1. Estimators:

An estimator T is an unbiased estimator for the parameter θ if $\mathbb{E}[T]=\theta$ irrespective of the value θ.
The bias of an estimator T is defined as $\mathbb{E}[T]-\theta=\mathbb{E}[T-\theta]$.
2. Unbiased estimator for the expectation and variance:

Let $X_{1}, X_{2}, \cdots, X_{n}$ be identically distributed samples from a distribution with finite expectation μ and finite variance σ^{2}. Then

- $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is an unbiased estimator for μ; and
- $S_{n}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ is an unbiased estimator for σ^{2}.

3. Bias-variance decomposition of the mean squared error:

$$
\operatorname{MSE}[T]=\mathbb{E}\left[(T-\theta)^{2}\right]=\underbrace{(\mathbb{E}[T]-\theta)^{2}}_{\text {Bias }^{2}}+\underbrace{\mathbb{V}[T]}_{\text {Variance }}
$$

- Estimator T_{1} is better than T_{2} if $\operatorname{MSE}\left[T_{1}\right]<\operatorname{MSE}\left[T_{2}\right]$;
- If T_{1} and T_{2} are both unbiased, then T_{1} is better than T_{2} iff $\mathbb{V}\left[T_{1}\right]<\mathbb{V}\left[T_{2}\right]$.

4. Jensen's inequality: for any random variable X, and any convex function $g: \mathbb{R} \rightarrow \mathbb{R}$ (i.e., for all λ, a and $b, \lambda g(a)+(1-\lambda) g(b) \geq g(\lambda a+(1-\lambda) b))$, we have

$$
\mathbb{E}[g(X)] \geq g(\mathbb{E}[X])
$$

If g is strictly convex and X is not constant, then the inequality is strict.
5. Expected number of samples until first collision: $\sqrt{\frac{\pi N}{2}}-\frac{1}{3}+O\left(\frac{1}{\sqrt{N}}\right)$
6. The secretary problem (maximise the probability of stopping at the best of n candidates):

Optimal strategy: reject the first $x-1$ candidates, then accept the first candidate $i \geq x$ that is better than all candidates before
Probability of success: $\frac{x-1}{n} \sum_{i=x}^{n} \frac{1}{i-1} \approx \frac{x}{n} \ln \left(\frac{n}{x}\right)$
Optimal $x=\frac{n}{e} \Longrightarrow$ maximum success probability: $\frac{1}{e}$

