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1 Prerequisites and Introduction
1. Combinatorics:

Counting tasks on n objects

Permutations (sort objects) Combinations (choose r objects)

Distinct Indistinct Distinct 1 group Distinct k groups

n!
n!

n1!n2! · · ·nr!

(
n

r

)
=

n!

r!(n− r)!

(
n

n1, n2, · · · , nk

)
=

n!

n1!n2! · · ·nk!

Pascal’s identity:
(
n

r

)
=

(
n− 1

r − 1

)
+

(
n− 1

r

)
(1 ≤ r ≤ n)

Binomial theorem: (x+ y)n =

n∑
r=0

(
n

r

)
xryn−r

2. Probability axioms:
Axiom 1: For any event E, 0 ≤ P[E] ≤ 1

Axiom 2: Probability of the sample space S is P[S] = 1

Axiom 3: If E and F are mutually exclusive (i.e., E ∩ F = ∅), then P[E ∪ F ] = P[E] + P[F ]
In general, for all mutually exclusive events E1, E2, · · · ,

P

[ ∞⋃
i=1

Ei

]
=

∞∑
i=1

P[Ei]

3. General inclusion-exclusion principle: P
[

n⋃
i=1

Ei

]
=

n∑
r=1

(−1)r+1

(
n∑

i1<···<ir

P[Ei1 ∩ · · · ∩ Eir ]

)
Case n = 2: P[E ∪ F ] = P[E] + P[F ]− P[E ∩ F ]

4. Union bound (Boole’s inequality): For any events E1, E2, · · · , En,

P

[
n⋃

i=1

Ei

]
≤

n∑
i=1

P[Ei]

5. Conditional probability (original and conditioning on event G):

Chain rule:

P[EF ] = P[E|F ]P[F ] P[EF |G] = P[E|FG]P[F |G]

Multiplication rule:

P[E1E2 · · ·En] = P[E1]P[E2|E1] · · · [En|E1 · · ·En−1]

P[E1E2 · · ·En|G] = P[E1|G]P[E2|E1G] · · · [En|E1 · · ·En−1G]

Independence of E and F :

P[EF ] = P[E]P[F ] P[EF |G] = P[E|G]P[F |G]

P[E|F ] = P[E] P[E|FG] = P[E|G]
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Law of total probability:

P[E] = P[EF ] + P[EF ∁] = P[E|F ]P[F ] + P[E|F ∁]P[F ∁]

P[E|G] = P[EF |G] + P[EF ∁|G] = P[E|FG]P[F |G] + P[E|F ∁G]P[F ∁|G]

In general, for disjoint events F1, F2, · · · , Fn such that F1 ∪ · · · ∪ Fn = S,

P[E] =

n∑
i=1

P[E|Fi]P[Fi] P[E|G] =

n∑
i=1

P[E|FiG]P[Fi|G]

Bayes’ theorem:

P[F |E] =
P[E|F ]P[F ]

P[E]
P[F |EG] =

P[E|FG]P[F |G]

P[E|G]

6. Confusion matrix:

Actual condition

Total population Positive F Negative F ∁

Predicted
condition

Positive E
True positive
P[E|F ]

False positive
P[E|F ∁]

Negative E∁ False negative
P[E∁|F ]

True negative
P[E∁|F ∁]

2 Random Variables
1. Probability distribution functions:

Discrete random variable X :

• Probability mass function (PMF): p(x)
• Compute probability:

P[X = a] = p(x)

P[a ≤ X ≤ b] =

b∑
x=a

p(x)

• Cumulative distribution function (CDF):

FX(a) = P[X ≤ a] =
∑
x≤a

p(x)

Continuous random variable X :

• Probability density function (PDF): f(x)
• Compute probability:

P[X = a] = 0

P[a ≤ X ≤ b] =

∫ b

a

f(x)dx

• Cumulative distribution function (CDF):

FX(a) = P[X ≤ a] =

∫ a

−∞
f(x)dx

2. Expectation:

Discrete random variable X :

E[X] =
∑
x

xp(x)

E[g(X)] =
∑
x

g(x)p(x)

Continuous random variable X :

E[X] =

∫ ∞

−∞
xf(x)dx

E[g(X)] =

∫ ∞

−∞
g(x)f(x)dx

Linearity of expectation: E[aX + b] = aE[X] + b

Additivity of expectation: E[X + Y ] = E[X] + E[Y ]

3. Variance: V[X] = E
[
(X − E[X])2

]
= E

[
X2
]
− E[X]2

Scaling of variance: V[aX + b] = a2V[X]

Standard deviation: SD[X] =
√

V[X]

Scaling of standard deviation: SD[aX + b] = |a|SD[X]
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4. Discrete distributions:

Bernoulli Ber(p): 1 experiment with success probability p

P[X = 1] = p E[X] = p V[X] = p(1− p)

Binomial Bin(n, p): n independent trials with success probability p

P[X = k] =

(
n

k

)
pk(1− p)n−k E[X] = np V[X] = np(1− p)

Poisson Pois(λ): # successes over experiment duration, with success rate λ = np

P[X = k] =
λk

k!
e−λ E[X] = λ V[X] = λ

Geometric Geo(p): # independent trials until first success, with success probability p

P[X = n] = (1− p)n−1p E[X] =
1

p
V[X] =

1− p

p2

Negative binomial NegBin(r, p): # independent trials until r success, with success probability p

P[X = n] =

(
n− 1

r − 1

)
(1− p)n−rpr E[X] =

r

p
V[X] =

r(1− p)

p2

Hypergeometric Hyp(N,n,m): # objects with a feature in a sample of size n (without replacement)
from a population of size N that contains m items with the feature

P[X = n] =

(
m
i

)(
N−m
n−i

)(
N
n

) E[X] = n
m

N
V[X] = n

m

N

(
1− m

N

)(
1− n− 1

N − 1

)

5. Continuous distributions:

Uniform Uni(α, β): equal probability within range [α, β]

PDF: f(x) =
{

1
β−α when α ≤ x ≤ β

0 otherwise
CDF: F (x) =


0 when x < α
x−α
β−α when α ≤ x ≤ β

1 when x > β

E[X] =
α+ β

2
V[X] =

(β − α)2

12

Exponential Exp(λ): time until first success occurs, with success rate λ

PDF: f(x) =
{
λe−λx when x ≥ 0

0 otherwise
CDF: F (x) = 1− e−λx

E[X] =
1

λ
V[X] =

1

λ2

Normal (Gaussian) N (µ, σ2): mean µ, variance σ2

PDF: f(x) = 1

σ
√
2π

e−
(x−µ2)

2σ2 CDF: F (x) = Φ

(
x− µ

σ

)
E[X] = µ V[X] = σ2

X ∼ N (µ, σ2) =⇒ aX + b ∼ N (aµ+ b, a2σ2)

X ∼ N (µX , σ2
X), Y ∼ N (µY , σ

2
Y ) =⇒ X + Y ∼ N (µX + µY , σ

2
X + σ2

Y )
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6. Continuity correction:
Discrete Continuous
P[X = a] ≈ P[a− 0.5 ≤ X ≤ a+ 0.5]

P[X > a] ≈ P[X ≥ a+ 0.5]

P[X ≥ a] ≈ P[X ≥ a− 0.5]

P[X < a] ≈ P[X ≤ a− 0.5]

P[X ≤ a] ≈ P[X ≤ a+ 0.5]

7. Joint probability mass function (for discrete RVs): pX,Y (a, b) = P[X = a, Y = b]

Joint distribution function (for discrete or continuous RVs): FX,Y (a, b) = P[X ≤ a, Y ≤ b]

Joint probability density f and joint continuous distribution F (for continuous RVs):

F (a, b) =

∫ a

−∞

∫ b

−∞
f(x, y)dxdy f(x, y) =

∂2

∂x∂y
F (x, y)

P[a1 ≤ X ≤ b1, a2 ≤ Y ≤ b2] =

∫ b1

a1

∫ b2

a2

f(x, y)dxdy

Marginal distribution: FX(a) = P[X ≤ a] = lim
b→∞

FX,Y (a, b)

8. Covariance: Cov[X,Y ] = E [(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

Covariance of linear combinations:

Cov[X, a] = 0 Cov[X,X] = V[X]

Cov[aX, bY ] = abCov[X,Y ] Cov[X + a, Y + b] = Cov[X,Y ]

Variance of sum: V[X + Y ] = V[X] + V[Y ] + 2Cov[X,Y ]

In general, for any random variables X1, X2, · · · , Xn:

V

[
n∑

i=1

Xi

]
=

n∑
i=1

V[Xi] + 2

n−1∑
i=1

n∑
j=i+1

Cov[Xi, Xj ]

Correlation coefficient: ρ(X,Y ) =
Cov[X,Y ]√
V[X]V[Y ]

∈ [−1, 1] (ρ(X,Y ) = 0 if V[X] = 0 or V[Y ] = 0)

Scaling-invariance of correlation coefficient: ρ(aX, bY ) = ρ(X,Y )

3 Moments and Limit Theorems
1. Markov’s inequality: for any non-negative random variable X with finite E[X], for any a > 0,

P[X ≥ a] ≤ E[X]

a

Let a = δ · E[X] (where δ > 0), then the inequality can be rewritten as

P[X ≥ δ · E[X]] ≤ 1

δ

2. Chebyshev’s inequality: for any random variable X with finite E[X] and V[X], for any a > 0,

P[|X − E[X]| ≥ a] ≤ V[X]

a2

Let a =
√

δ · V[X] (where δ > 0), then the inequality can be rewritten as

P
[
|X − E[X]| ≥

√
δ · V[X]

]
≤ 1

δ
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3. Weak law of large numbers: let Xn = 1
n

∑n
i=1 Xi, where Xi’s are independent and identically

distributed (i.i.d.) with finite expectation µ and finite variance σ2. Then, for any ϵ > 0,

lim
n→∞

P
[
|Xn − µ| > ϵ

]
= 0

Strong law of large numbers:
P
[
lim
n→∞

Xn = µ
]
= 1

4. Central limit theorem: let X1, X2, · · · , Xn be any sequence of i.i.d. random variables with finite
expectation µ and finite variance σ2. Let

Zn =
√
n · Xn − µ

σ
=

1

σ
√
n

(
n∑

i=1

Xi − nµ

)
Then for any number a ∈ R, it holds that

lim
n→∞

FZn
(a) = Φ(a) =

1

2π

∫ a

−∞
e−

x2

2 dx

where Φ is the CDF of the standard normal distribution N (0, 1).

4 Applications and Statistics
1. Estimators:

An estimator T is an unbiased estimator for the parameter θ if E[T ] = θ irrespective of the value θ.
The bias of an estimator T is defined as E[T ]− θ = E[T − θ].

2. Unbiased estimator for the expectation and variance:
Let X1, X2, · · · , Xn be identically distributed samples from a distribution with finite expectation
µ and finite variance σ2. Then

• Xn =
1

n

n∑
i=1

Xi is an unbiased estimator for µ; and

• Sn =
1

n− 1

n∑
i=1

(
Xi −Xn

)2 is an unbiased estimator for σ2.

3. Bias-variance decomposition of the mean squared error:

MSE[T ] = E[(T − θ)2] = (E[T ]− θ)2︸ ︷︷ ︸
Bias2

+ V[T ]︸︷︷︸
Variance

• Estimator T1 is better than T2 if MSE[T1] < MSE[T2];
• If T1 and T2 are both unbiased, then T1 is better than T2 iff V[T1] < V[T2].

4. Jensen’s inequality: for any random variable X , and any convex function g : R → R (i.e., for all λ,
a and b, λg(a) + (1− λ)g(b) ≥ g(λa+ (1− λ)b)), we have

E[g(X)] ≥ g(E[X])

If g is strictly convex and X is not constant, then the inequality is strict.

5. Expected number of samples until first collision:
√

πN

2
− 1

3
+O(

1√
N

)

6. The secretary problem (maximise the probability of stopping at the best of n candidates):
Optimal strategy: reject the first x−1 candidates, then accept the first candidate i ≥ x that is better
than all candidates before

Probability of success: x− 1

n

n∑
i=x

1

i− 1
≈ x

n
ln
(n
x

)
Optimal x =

n

e
=⇒ maximum success probability: 1

e

5


	Prerequisites and Introduction
	Random Variables
	Moments and Limit Theorems
	Applications and Statistics

