
CST Part II Unit of Assessment

Data Science: principles and practice

Report on the Final Practical: Analysing
Clickstream Data for Online Shopping

Xiangyu Zhao

Trinity College

CRSid: xz398

3 December 2020

1 Introduction

In the final practical, I am required to analyse a clickstream dataset on an e-shop clothing
website1 between April and August 2008. I am required to interpret price 2 as represent-
ing a user’s potential willingness to pay a premium price, and build a predictive, machine
learning model to predict the target value – price 2, so that in the future the website
can be dynamically altered based on the user or their behaviour, in order to maximise
profit.

2 Data Exploration

By looking at the info() of the dataset, I can see that there are 165,474 records in this
dataset, and satisfactorily, there is no empty entry in the dataset.

Since the year, month, and day attributes are separated in the dataset, I manually
added a date attribute to the dataset that merges the year, month, and day attributes,
setting the first day (i.e., 1 April 2008) as day 0. Since the page 2 (clothing model)

attribute contains textual data, I encoded it into numerical values, so that I can inspect
the data distribution later on.

The statistical summary of the dataset are obtained by calling the describe() method
(excluding the year attribute since there is only one value):

month day date order country session ID page 1 page 2

mean 5.59 14.52 +61.68d 9.82 26.95 12058.42 2.40 82.74

std. dev. 1.33 8.83 40.73 13.48 7.15 7008.42 1.14 59.12

min 4 1 0d 1 1 1 1 0

25% 4 7 +24d 2 29 5931 1 38

median 5 14 +59d 6 29 11967.5 2 70

75% 7 22 +98d 12 29 18219 3 132

max 8 31 +134d 195 47 24026 4 216

1

colour location model photography price price 2 page

mean 6.23 3.26 1.26 43.80 1.49 1.71

std. dev. 4.24 1.71 0.44 12.55 0.50 0.98

min 1 1 1 18 1 1

25% 3 2 1 33 1 1

median 4 3 1 43 1 1

75% 9 5 2 52 2 2

max 14 6 2 82 2 5

The data distribution histograms of the attributes are also plotted:

By looking at the data distribution, the following findings can be obtained:

� Other than the first few days in April 2008 that has a lot more clickstream records,
the number of clickstream records in the rest of the dates within the interval of this
dataset are roughly at the same level, though there might be some periodic peaks
and troughs;

� Nearly all sessions have no more than 50 clicks, though there exists an outlier of
195 clicks within one session;

� The vast majority of the countries recorded by this dataset is Poland (29);

2

� Clicks on each main category of the products are approximately the same, with
clicks on trousers (1) slightly more than the others;

� There are more clicks on the top, left or middle of the web page, than on the bottom
and right of the the web page;

� Clicks on the en face model photographs and on the profile model photographs have
a roughly 3:1 ratio;

� Clicks on products with different prices follow a right-skewed distribution.

� More than half of the clicks recorded were on the first page of the website, and as
the page number goes on, the number of clicks decays in a exponential manner;

In addition, by inspecting the definition of the target value, price 2, as well as other
attributes, I made the following two guesses:

1. The value of price 2 is directly derived from the mean value of price on each main
category (i.e., page 1 (main category));

2. The value of price is fixed for each clothing model (i.e., page 2 (clothing model)),
and consequently the value of price 2 is also fixed for each clothing model.

Both guesses are verified through coding experiments. Therefore, I can derive the
following conclusion: the target value price 2 can be directly obtained from the clothing
model, page 2 (clothing model).

3 Machine Learning Algorithms Implementation

3.1 Trivial Classifier

Based on the insights gained from data exploration, I can trivially build a classifier that
simply calculates the main price of each main category, and compares it with the price

attribute, achieving 100% accuracy.
However, if in the scenario where the e-commerce website owner wishes to dynamically

alter the website and the prices of the products based on the user and their behaviour to
maximise profit, and requires a predictive model that attempts to generalise beyond this
dataset, as some features of the e-commerce website from which the dataset was derived
might be changed in the future, then such a trivial classifier will be unsuitable for this
task, because it was built based on the assumption that price is fixed for each clothing
model. Also, to build such a predictive model, I will have to interpret price 2 as a user’s
willingness to pay a premium price, rather than its original definition “whether the price of
a particular product is higher than the average price for the entire product category”, and
the attributes that directly derive price 2, i.e., price and page 2 (clothing model),
must be dropped when training the model.

3

3.2 Preparation

For this task, I prepared 4 datasets for future model training:

1. Dataset 1: the original dataset (that is, not including the date attribute, which
is manually added by me), dropping the price and page 2 (clothing model)

attributes, as they directly derive the target value;

2. Dataset 1 (scaled): this is the same as Dataset 1, with scaling applied to each
attribute, using sklearn.preprocessing.StandardScaler. The scaling is based
on the following formula:

Xscaled =
X − µ

σ

3. Dataset 2: obtained from Dataset 1, dropping more less-correlated features, based
on the following reasonings:

� Since all records in this dataset are collected in 2008, I can drop the year

feature;

� The month feature also seems unimportant, but judging from the data distri-
bution histogram for day and date attributes, there may be periodic rises and
falls with durations of a few days, so I dropped the month feature, but kept
the day feature;

� The value of the session ID feature seems to be automatically generated
and reveal no information of the customer, so I also dropped the session ID

feature.

4. Dataset 2 (scaled): same as Dataset 2, with scaling applied to each attribute, also
using sklearn.preprocessing.StandardScaler.

I have split all the above-defined 4 datasets into stratified train-dev-test sets with
roughly 8:1:1 separation, obtaining 134,033 records for each the training set, 14,893 records
for each development set, and 16,548 records for each test set.

Before actually training any model, I also figured out the baseline accuracy, which is
a model that always predicts one class. The baseline accuracy is 51.18%, obtained by a
model that always predicts 1-yes (class 1-yes has slightly more values than class 2-no).

3.3 Traditional Models

3.3.1 Simple Classifiers

For simple classifiers, I tried näıve Bayes models, logistic regression models, and single-
layer perceptron models. For the näıve Bayes models, I tried the GaussianNB, BernoulliNB
and MultinomialNB variations, to compare their performances. For the single-layer per-
ceptron models, I also tried applying the RBF kernel to the datasets, for comparisons
with the single-layer perceptron models without the RBF kernel. I trained those models
on all 4 datasets, except for the MultinomialNB, which does not accept negative values,
and therefore cannot be trained using the scaled datasets. The training set accuracy and
the development set accuracy of each trained model are recorded in the following table:

4

Dataset Train accuracy Dev accuracy

Gaussian Näıve Bayes Dataset 1 57.40% 56.75%

Multinomial Näıve Bayes Dataset 1 50.56% 50.48%

Bernoulli Näıve Bayes Dataset 1 51.16% 51.35%

Logistic Regression Dataset 1 56.90% 55.94%

Single-layer Perceptron Dataset 1 48.84% 48.65%

Perceptron with RBF Kernel Dataset 1 51.11% 51.34%

Gaussian Näıve Bayes Dataset 1 (scaled) 57.79% 57.11%

Bernoulli Näıve Bayes Dataset 1 (scaled) 54.79% 54.26%

Logistic Regression Dataset 1 (scaled) 56.64% 55.45%

Single-layer Perceptron Dataset 1 (scaled) 48.94% 48.39%

Perceptron with RBF Kernel Dataset 1 (scaled) 49.97% 50.42%

Gaussian Näıve Bayes Dataset 2 57.79% 57.03%

Multinomial Näıve Bayes Dataset 2 54.27% 54.02%

Bernoulli Näıve Bayes Dataset 2 51.16% 51.35%

Logistic Regression Dataset 2 56.27% 55.15%

Single-layer Perceptron Dataset 2 53.37% 53.78%

Perceptron with RBF Kernel Dataset 2 48.84% 48.65%

Gaussian Näıve Bayes Dataset 2 (scaled) 57.79% 57.01%

Bernoulli Näıve Bayes Dataset 2 (scaled) 54.47% 54.00%

Logistic Regression Dataset 2 (scaled) 56.27% 55.19%

Single-layer Perceptron Dataset 2 (scaled) 53.63% 53.21%

Perceptron with RBF Kernel Dataset 2 (scaled) 54.70% 54.05%

All simple classifier models produce only barely-above-the-baseline accuracies, and
some of the models even perform worse the baseline model, including:

� The MultinomialNB model trained using Dataset 1;

� The BernoulliNB models trained using unscaled datasets;

� The single-layer perceptron models trained using Dataset 1, both with and without
scaling;

� All single-layer perceptron models with the RBF kernel, except the one trained using
Dataset 2 (scaled).

It seems from the results that all simple classifier models perform poorly in this task,
and more complex models must be used to produce helpful predictions. However, there
are still minor improvements gained from a better choice of dataset – models trained
using Dataset 2 (both variations) and using scaled datasets generally perform better than
the same models trained using Dataset 1 (both variations) and using unscaled datasets.
Therefore, I can also expect Dataset 2 (scaled) to work better on training future models.

5

3.3.2 Ensemble-based Classifiers

Now that the 3 types of simple classifier models tried in the previous subsection all perform
poorly in this task, I tried whether a voting classifier based on the above 3 models can
obtain a better performance. Based on the experience gained from training the simple
classifier models, since the simple classifier models generally perform better when trained
using Dataset 2 (scaled), I will only train future models with Dataset 2 (scaled) from now
on. For the Näıve Bayes model, I used GaussianNB, since it is the best-performing Näıve
Bayes model among the 3 Näıve Bayes variations. For the single-layer perceptron model,
I did not include the RBF kernel, since the other classifiers do not include the RBF kernel.
Both hard voting and soft voting strategies have been tried. Before carrying out training
the voting classifiers, correlations between the 3 individual models are calculated to make
sure that they are diverse enough, as shown in the following table:

Näıve Bayes Logistic Regression Perceptron

Näıve Bayes 1.000 0.707 0.146

Logistic Regression 0.707 1.000 0.093

Perceptron 0.146 0.093 1.000

The development set accuracy of each trained model are recorded in the following
table:

Dev accuracy

Gaussian Näıve Bayes 57.01%

Logistic Regression 55.19%

Single-layer Perceptron 53.21%

Hard Voting Classifier 55.97%

Soft Voting Classifier 54.68%

Neither the hard voting classifier nor the soft voting classifier performs better than
the best of the 3 individual classifiers (i.e., GaussianNB). It seems that voting classifiers
are not helpful in improving the performance of the 3 poorly-performing simple classifiers
in this task.

Now that voting classifiers using an ensemble of the 3 simple classifiers perform poorly
in this task, I tried some more complex ensemble-based classifiers. I trained a bagging
classifier and a pasting classifier, each with an ensemble of 500 decision trees, and each
decision tree trained on 200 training instances randomly selected from the training set.
I also trained a random forest classifier that trains an ensemble of 500 decision trees,
and I also used both AdaBoost and gradient boosting to train a ensemble of 500 decision
trees. After hyperparameter tuning, I found that the AdaBoost classifier performs best
when learning rate=1 (when learning rate is less than 1, overfitting may occur), and
the gradient boosting classifier performs best when n estimators=488 and max depth=5

(when max depth is greater than 5, overfitting may occur). Since gradient boosting is
fairly robust to over-fitting, and a large n estimators number usually results in better
performance, the over-fitting effect on a large n estimators is negligible; also, since there
is a trade-off between learning rate and n estimators in gradient boosting, There is
no need to apply hyperparameter tuning on learning rate, now that the best value for
n estimators has been found.

6

The training set accuracy and the development set accuracy of the best of each trained
model are recorded in the following table:

Train accuracy Dev accuracy Out-of-bag accuracy

Bagging Classifier 79.50% 79.59% 79.39%

Pasting Classifier 79.48% 79.61% –

Random Forest Classifier 95.81% 92.47% –

AdaBoost Classifier 95.81% 92.14% –

Gradient Boosting Classifier 93.61% 93.37% –

All models perform very well, with the random forest classifier, the AdaBoost classifier,
and the gradient boosting classifier reaching above 90% accuracies. It seems that the
complex ensemble-based classifiers perform well in this task.

3.4 Deep Learning Models

Since this task is not a image recognition like problem with a huge number of features,
or a problem that requires processing on a sequence of input, I did not try convolutional
neural networks or recurrent neural networks on this task, and only trained regular deep
neural networks.

The neural networks that I have built in the Practical 4 assignment served as a good
starting point in my final practical. I built a neural network consisting of:

1. An input layer with 8 nodes, since there are 8 features in Dataset 2 (scaled). All
nodes used ReLU as the activation function;

2. 2 densely-connected hidden layers with 64 nodes, followed by a densely-connected
hidden layer with 32 nodes, and a densely-connected hidden layer with 16 nodes.
All nodes used ReLU as the activation function;

3. An output layer with 2 nodes, using softmax as the activation function.

After hyperparameter tuning, the best performance of my DNN model can be reached
at epochs=150. The training set accuracy and development set accuracy plots in the 150
epochs are shown in the below diagram:

After 150 epochs, my DNN model achieved a training set accuracy of 93.18%, and a
development set accuracy of 93.38%, which is one of the best results of all models I have
trained for this task.

7

4 Evaluation

The test set accuracies of the best of each type of models I have trained for this task are
recorded in the following table (as usual, using Dataset 2 (scaled)):

Test accuracy

Gaussian Näıve Bayes 57.86%

Logistic Regression 56.02%

Single-layer Perceptron 53.54%

Hard Voting Classifier 57.13%

Soft Voting Classifier 55.34%

Bagging Classifier 79.32%

Pasting Classifier 79.41%

Random Forest Classifier 92.14%

AdaBoost Classifier 91.90%

Gradient Boosting Classifier 91.01%

Deep Neural Network 93.37%

The DNN model is the best-performing model in terms of the test set accuracy. The
confusion matrix and the precision, recall, F1 scores of the DNN model are shown below:

1-yes 2-no

1-yes 7866 608

2-no 570 7504

Precision 92.88%

Recall 92.88%

F1 Score 92.88%

This shows that the DNN model performs evenly well on predicting both classes.
Unfortunately, since there is no direct way to measure the feature importance in a neural
network, the feature importance derived from the random forest classifier were used as
reference, since the random forest classifier performs nearly as well as the DNN model.
The sorted feature importances are shown in the following table:

Feature importance

colour 33.74%

location 22.35%

page 14.58%

page 1 (main category) 13.68%

order 5.25%

day 4.74%

model photography 4.34%

country 1.32%

Therefore the colour of the product, colour, is the most important feature for pre-
dicting price 2. Following that, the photo location on the webpage, location, page
number within the e-store website, page, and the main product category, page 1 (main

category), are also very important features for predicting price 2, compared to the
other features.

8

5 Visualisation and Dimensionality Reduction

Firstly, the splom on the Dataset 2 (unscaled) is plotted, with colour-coding by price 2,
in order to gain initial insights for further dimensionality reduction:

It shows on the splom that there is indeed a notable split on the colour attribute,
which cross-validates the feature importance obtained from the previous section. PCA is
then applied on Dataset 2 (scaled), and a scatter plot of the first 2 components, which
represent the 2 most important features, colour and location, is shown in the below
diagram:

The scatters of the 2 classes almost overlap with each other, which does not provide a
helpful clustering for this task. t-SNE is also applied on Dataset 2 (scaled), with different
perplexities, and scatter plots of the first 2 components are also plotted, as shown in the
following diagrams:

9

(a) perplexity=10 (b) perplexity=20

(c) perplexity=30 (d) perplexity=40

(e) perplexity=50

10

t-SNE produces a more helpful clustering visualisation. Also, as the perplexity goes
up, the clustering effect becomes more and more notable, and there are less overlapping.
This suggests that using t-SNE with a higher perplexity can help more in the visualisation
of this task. However, there are still overlaps even when the perplexity is set to 50, which
suggests that the 2 most important features alone cannot perfectly separate the two
classes, and would have to rely on more features.

6 Conclusions

In the final practical, I built various models to predict the target value – price 2, and
achieved a maximum test set accuracy of 93.37%, using a deep neural network. By
inspecting on the data, calculating the feature importances from the models, and cross-
validating with various dimensionality reductions, I also found the important features in
predicting price 2, which are the colour of the product, colour, and the photo location
on the webpage, location.

References

[1] Mariusz Lapczyński and Sylwester Bia low ↪as. Discovering patterns of users’ behaviours
in an e-shop – comparison of consumer buying behaviours in Poland and other Euro-
pean countries. Sep 2013.

11

	Introduction
	Data Exploration
	Machine Learning Algorithms Implementation
	Trivial Classifier
	Preparation
	Traditional Models
	Simple Classifiers
	Ensemble-based Classifiers

	Deep Learning Models

	Evaluation
	Visualisation and Dimensionality Reduction
	Conclusions

