
Function Autoencoder: A Neural Network Approach
to Gaussian Processes

Xiangyu Zhao
Trinity College

xz398@cam.ac.uk

Abstract

Gaussian processes (GPs) are data-efficient and flexible probabilistic methods that
learn distributions of functions based on given priors. However, GPs suffer from
unscalability as they become very computationally expensive on large datasets,
and choosing the appropriate priors for GPs can be nontrivial. In this project, I
investigated a neural network (NN) alternative to GPs, and introduced the function
autoencoders that preserve GPs’ own advantages and avoid their weaknesses with
NNs’ benefits. I tested the performance of the various function autoencoders on a 1-
dimensional function regression task, and compared and analysed their results. The
trained function autoencoder models indeed have the ability to learn distributions
over random functions, and performed decently on the selected task. Moreover, the
function autoencoders demonstrate a great potential for further improvements.

1 Introduction

Function approximation sits at the core of most machine learning problems, and in some cases
modelling the uncertainties of the approximations, in addition to predicting the values of the functions,
can also be highly desirable. This requires the suitable machine learning methods to be able to not
only learn the function instances, but also model the distributions over random functions. A popular
approach for this task is to perform inference on a stochastic process, in which Gaussian processes
(GPs) are the most common instantiation [1]. GPs are data efficient as it can carry out Bayesian
inference about underlying ground truth function conditioned on only a handful of observations, and
is very flexible at test time. In addition, GPs can also represent infinitely many different functions
at the locations that has not been observed, which allows them to capture the uncertainty of the
predictions. However, GPs are computationally expensive and scale cubically with respect to the
number of datapoints, and it can be very difficult to design appropriate priors in practice.

On the other hand, a neural network (NN) can learn to parameterise a single function without the
need of being taught with an appropriate prior, but requires a large number of training data and cannot
model distributions over functions. Knowing how to combine the benefits of both GPs and NNs
therefore becomes very desirable. Previous works on this task include Conditional Neural Processes
(CNPs) [2] and Neural Processes (NPs) [3], with the latter improving the former by adding a latent
variable to the original deterministic representation. In this project, I shall build upon the NPs and
CNPs and design a neural network approach to GPs, in an autoencoder style, called the function
autoencoders.

2 Method

2.1 Stochastic process interpretation

A stochastic process is a collection of random variables indexed by some parameters. When defining
a stochastic process, a standard approach is to define its finite-dimensional marginal distributions. In

this specific case, the stochastic process is a random function F : X → Y , where F is sampled from a
distribution F . For each finite sequence x[1:n] = (x1, · · · , xn) ∈ Xn, the marginal joint distributions
over the function values can be defined as Y[1:n] = (Y1, · · · , Yn) ∼ (F (x1), · · · , F (xn)). For
example, in the case of Gaussian processes (GPs), the joint distributions are multivariate Gaussians
parameterised by a mean and covariance function. According to the Kolmogorov extension theorem
[4], these joint distributions need to have the following properties:

• Exchangeability: the joint distributions need to be permutation invariant. More precisely,
for all permutations π on {1, · · · , n}, where n ∈ N,

PrY (y1, · · · , yn|x1, · · · , xn) = PrY (yπ(1), · · · , yπ(n)|xπ(1), · · · , xπ(n)) (1)

• Consistency: if a part of the sequence is marginalised, the resulting marginal distribution
needs to be the same as the original sequence. In mathematical terms, if 1 ≤ m ≤ n, then

PrY (y[1:m]|x[1:m]) =

∫
Y[m+1:n]

PrY (y[1:n]|x[1:n])dY[m+1:n] (2)

Therefore, given a particular instantiation of the function Fi, the joint distribution is defined as:

PrYi(yi|xi) =
∫
F

PrF (Fi) PrYi(yi|Fi,xi)dF (3)

If we assume a Gaussian noise for the observations, i.e., Y ∼ N (F (x), σ2), then

PrYi(yi|Fi,xi) =
ni∏
j=1

N (yij |Fi(xij), σ2) (4)

Inserting this into Equation (3), we can specify the joint distribution as

PrYi(yi|xi) =
∫
F

PrF (Fi)

ni∏
j=1

N (yij |Fi(xij), σ2)dF (5)

This means that the observations Y1, · · · , Yn are conditionally independent given the function F .
Therefore, as long as we can approximate F with an NN, we will be able to represent such a stochastic
process using NNs and find the marginal joint distributions.

2.2 Function autoencoders

Assume that the random function F can be written as F (x) = fθ(x, Z), where fθ is a deterministic,
learnable function parametrised by θ, and Z is a latent variable (i.e., the randomness of F is provided
by Z). Then, following the idea of variational autoencoders, we can assume Z to be a multivariate
normal, and train an NN to fit fθ in an autoencoder style. However, a typical NN trained on a dataset
can only learn a single function, rather than a distribution over random functions. To learn such a
distribution over random functions instead of a single function instance, it is essential to train the
model using multiple datasets concurrently:

D = {(x1,y1), · · · , (xk,yk)}

where each dataset (xi,yi) is a sequence of observed inputs xi = [xi1 · · · xini] and outputs
yi = [yi1 · · · yini] = [Fi(xi1) · · · Fi(xini)] of an instance of the random functions Fi ∼ F . In
this way, we can learn the variability of the random function from the variability of the datasets.

2

From what we know about a variational autoencoder, we can write down the log likelihood of a single
dataset (xi,yi) as a function of θ:

Li(θ) = log PrYi(yi|xi; θ)

=
∑
j

log PrYi(yij |xij ; θ) ((xij , yij) are independent samples)

=
∑
j

log

∫
zi

PrYi(yij |zi, xij ; θ) PrZi(zi)dzi (law of total probability)

=
∑
j

logEzi∼Zi [PrYi(yij |zi, xij ; θ)] (writing integral as expectation)

=
∑
j

logEzi∼Z̃i

[
PrYi(yij |zi, xij ; θ)

PrZi(zi)

PrZ̃i(zi)

]
(importance sampling using Z̃)

(6)

If we train an encoder gφ(xi,yi) to estimate the latent variable Z̃i, then the log likelihood can be
written as:

Li(θ) =
∑
j

logE
zi∼Z̃(φ)

i

[
PrYi(yij |zi, xij ; θ)

PrZi(zi)

Pr
Z̃

(φ)
i

(zi|xi,yi)

]

≥
∑
j

E
zi∼Z̃(φ)

i

[
log

(
PrYi(yij |zi, xij ; θ)

PrZi(zi)

Pr
Z̃

(φ)
i

(zi|xi,yi)

)]
(Jensen’s inequality)

= Llbi(θ, φ) (7)

We can then use Llbi(θ, φ) to define the lower bound log likelihood of the particular dataset (xi,yi).
Moreover, the log likelihood of the entire collection of the datasets D can be derived:

L(θ) = log PrY (yi, · · · ,yk|xi, · · · ,xk; θ)

=
∑
i

log PrYi(yi|xi; θ) =
∑
i

Li(θ) ((xi,yi) are independent datasets)

=
∑
i

∑
j

logE
zi∼Z̃(φ)

i

[
PrYi(yij |zi, xij ; θ)

PrZi(zi)

Pr
Z̃

(φ)
i

(zi|xi,yi)

]

≥
∑
i

∑
j

E
zi∼Z̃(φ)

i

[
log

(
PrYi(yij |zi, xij ; θ)

PrZi(zi)

Pr
Z̃

(φ)
i

(zi|xi,yi)

)]
(Jensen’s inequality)

=
∑
i

Llbi(θ, φ) = Llb(θ, φ) (8)

Therefore the training goal of a function autoencoder becomes finding the optimal θ̂ and φ̂ that
jointly maximises Llb(θ, φ), the lower bound log likelihood of the entire collection of the datasets D.
Besides, at training time, Llb(θ, φ) is computed using the Kullback-Leibler divergence:

Llbi(θ, φ) =
∑
j

{
E
zi∼Z̃(φ)

i

[
log PrYi(yij |zi, xij ; θ)

]
− KL

(
Pr

Z̃
(φ)
i |xi,yi

||PrZi
)}

(9)

Llb(θ, φ) =
∑
i

∑
j

{
E
zi∼Z̃(φ)

i

[
log PrYi(yij |zi, xij ; θ)

]
− KL

(
Pr

Z̃
(φ)
i |xi,yi

||PrZi
)}

(10)

which enables us to approximate Llb(θ, φ) using Monte Carlo sampling, and makes it differentiable
for the sake of gradient descent.

At test time, each dataset (xi[1:ni],yi[1:ni]) is split into a training dataset containing the context points
(xi[1:mi],yi[1:mi]), and a holdout dataset containing the target points (xi[mi+1:ni],yi[mi+1:ni]), for
some m such that 1 ≤ m ≤ n. The functional autoencoder is then required to model the conditional
joint distributions of the target points, given the context points. Therefore, we can revise the training

3

goal to a conditional log likelihood of the holdout dataset given the training dataset, which reflects
better of the model’s desired behaviour at test time:

Li(θ) = log PrYi(yi[mi+1:ni]|xi[1:ni],yi[1:mi]; θ)

≥
ni∑

j=mi+1

E
zi∼Z̃(φ)

i

[
log

(
PrYi(yij |zi, xij ; θ)

PrZi(zi|xi[1:mi],yi[1:mi])
Pr

Z̃
(φ)
i

(zi|xi[1:ni],yi[1:ni])

)]
= Llbi(θ, φ) (11)

L(θ) =
k∑
i=1

log PrYi(yi[mi+1:ni]|xi[1:ni],yi[1:mi]; θ)

≥
k∑
i=1

ni∑
j=mi+1

E
zi∼Z̃(φ)

i

[
log

(
PrYi(yij |zi, xij ; θ)

PrZi(zi|xi[1:mi],yi[1:mi])
Pr

Z̃
(φ)
i

(zi|xi[1:ni],yi[1:ni])

)]
= Llb(θ, φ) (12)

Since the perfect sampling distribution PrZi(zi|xi[1:mi],yi[1:mi]) is intractable, we can approximate
it using Pr

Z̃
(φ)
i

(zi|xi[1:mi],yi[1:mi]):

Llbi(θ, φ) ≈
ni∑

j=mi+1

E
zi∼Z̃(φ)

i

[
log

(
PrYi(yij |zi, xij ; θ)

Pr
Z̃

(φ)
i

(zi|xi[1:mi],yi[1:mi])
Pr

Z̃
(φ)
i

(zi|xi[1:ni],yi[1:ni])

)]
(13)

Llb(θ, φ) ≈
k∑
i=1

ni∑
j=mi+1

E
zi∼Z̃(φ)

i

[
log

(
PrYi(yij |zi, xij ; θ)

Pr
Z̃

(φ)
i

(zi|xi[1:mi],yi[1:mi])
Pr

Z̃
(φ)
i

(zi|xi[1:ni],yi[1:ni])

)]
(14)

In order to be able to predict accurately across the entire collection of datasets, the model needs to
learn a distribution that covers all the functions observed during training, as well as being able to take
into account the context data at test time.

2.3 Model structures

A basic function autoencoder implemented in this project consists of three core components:

• An NN latent encoder gφ that, for every instance Fi of random functions F1, · · · , Fk, takes
in one context point (xij , yij) at each time, and produces the parameters of a sampling
distribution Z̃ij . Since, in this project’s case, the latent distribution Z is assumed to
be a multivariate Gaussian, the parameters that gφ(xij , yij) should produce would be
the mean µij and standard deviation σij of the multivariate Gaussian distribution Z̃ij ∼
MVN(µij , σ

2
ijI).

• An aggregator a that summarises the encoder’s outputs, as we are interested in obtaining a
single permutation-invariant global latent variable Z̃i ∼ MVN(µi, σ

2
i I) for each random

function instance Fi. The simplest operation that ensures permutation invariance and works
well in practice is the mean function:

µi = a(µi[1:ni]) =
1

ni

ni∑
i=1

µi σi = a(σi[1:ni]) =
1

ni

ni∑
i=1

σi (15)

Moreover, the aggregator reduces the runtime to O(n) where n is the total number of
datapoints, which is crucial in improving the model’s computational efficiency.

• An NN decoder fθ that takes in a sampled global latent variable zi ∼ Z̃i and a new target
input xij′ , and outputs the mean µ̂ij′ and standard deviation σ̂ij′ of the predicted Gaussian
distribution of the output Ŷij′ ∼ N (µ̂ij′ , σ̂

2
ij′), for the corresponding evaluation of the

function Yij′ ∼ Fi(xij′).

Figure 1a shows the structure of such a basic function autoencoder, which is named a latent model.
However, experimental results shows that such a function autoencoder that relies only on a global

4

(a) Latent model (b) Deterministic model

(c) Latent-deterministic model

Figure 1: Structures of the function autoencoder models.

latent variable suffers from underfitting, giving inaccurate predictions at the target inputs, conditioning
on the context observations. Therefore, I introduced an additional component, which is an NN
deterministic encoder hψ: for each input context point (xij , yij) instead of producing a distribution
of random variable Z, it produces a deterministic representation rij . The vector of representations ri
also needs to be passed through an aggregator, to obtain the global representation ri = a(ri).

I then improved the latent model by including both the latent encoder and the deterministic encoder
into the function autoencoder, and built the latent-deterministic model, as shown in Figure 1c. The
lower bound log likelihood of the datasets for this model therefore becomes

Llbi(θ, φ, ψ) =
∑
j

E
zi∼Z̃(φ)

i

[
log

(
PrYi(yij |zi, ri, xij ; θ, ψ)

PrZi(zi)

Pr
Z̃

(φ)
i

(zi|xi,yi)

)]
(16)

Llb(θ, φ, ψ) =
∑
i

∑
j

E
zi∼Z̃(φ)

i

[
log

(
PrYi(yij |zi, ri, xij ; θ, ψ)

PrZi(zi)

Pr
Z̃

(φ)
i

(zi|xi,yi)

)]
(17)

I have also built a function autoencoder variant by using only the deterministic encoder, called a
deterministic model, as shown in Figure 1b. The deterministic model serves as a reference model
to be compared with the other two models that involve a latent variable. Since the entire model is
deterministic, this model is essentially not a variational autoencoder, and can not model distributions
over random functions (i.e. it can only fit functions from observing the context points, but is unable
to produce different function samples for the same context data). The log likelihood of the datasets
for this model can also be computed deterministically, without the need of variational inference:

Li(θ, ψ) =
∑
j

log PrYi(yij |ri, xij ; θ, ψ) (18)

L(θ, ψ) =
∑
i

∑
j

log PrYi(yij |ri, xij ; θ, ψ) (19)

5

In summary, the pipeline of the three aforementioned models can be formulated as follows: for
i = 1, · · · , k and j = 1, · · · , ni:

for the latent and latent-deterministic models:

Z̃ij = gφ(xij , yij) (20)

Z̃i = a(Z̃i[1:ni]) (21)

zi ∼ Z̃i (22)
for the latent-deterministic and deterministic models:

rij = hψ(xij , yij) (23)
ri = a(ri[1:ni]) (24)

decoding:

ŷij = fθ(〈zi〉, 〈ri〉, xij)1 (25)

3 Experiments

3.1 Experimental setup

In order to test the abilities of my function autoencoders to learn to model the distributions over
random functions, I applied them to a 1-dimensional function regression task. For this experiment,
the functions were generated using a GP with varying kernel parameters for each function. When
generating functions, I first sampled a set of parameters for the Gaussian kernel for the GP, and
then used those to sample a function instance Fi. For each function instance Fi, a random number
mi of observations (xi[1:mi],yi[1:mi]), limited by a preset maximum number of context points
mmax, were used as context points for training (i.e., both xi[1:mi] and yi[1:mi] were visible to the
model), and a further unobserved ni −mi datapoints (xi[mi+1:ni],yi[mi+1:ni]) were used as target
points for evaluation (i.e., only xi[mi+1:ni] were fed into the model, while the ground truth values
yi[mi+1:ni] were kept for comparison against the model’s predictions ŷi[mi+1:ni]). For the same
function instances, I experimented on training the function autoencoders using a maximum of 10, 50,
and 100 context points respectively.

During training, every sampled function instance Fi were trained for a number of iterations, before
being discarded and resampling of new function instances. Finding the right number of iterations to
train on each function instance can greatly affect the training performance. If each function instance
is trained for an insufficient number of iterations, the model cannot learn enough information from
each function instance, resulting in a meaningless training overall, and is a waste of the overwhelming
data. On the contrary, if each function instance is trained for too many iterations, the model would
overfit to that particular function, and cannot learn the big picture of the overall distribution. The
number of iterations for training each function instance varies for different models, based on the
different characteristics of the models. Since the latent encoder is prone to underfitting, the number of
iterations for training each function instance required by a model containing a latent encoder tend to
be larger. In practice, after several trials, I eventually set the number of iterations for every function
instance to be trained before resampling to be 5,000 for a latent model, and this number became 500
for a latent-deterministic model, and 100 for a deterministic model.

The hidden NN structure for each encoder used in this project was a multi-layer perceptron (MLP)
of 4 layers, with each layer containing 128 perceptrons. Each decoder was structured as a 2-layer
MLP plus an output layer of dimension 2 (one each for the predicted mean and standard deviation),
also with 128 perceptrons in each hidden layer. The dimensions for both the latent variable and the
deterministic representation were set to 128. During training, the function instances were trained
in batches of size 16. All three types of models, each with all three choices of maximum numbers
of context points, were trained for 100,000 epochs, using Adam with learning rate of 10−4 as the
optimiser. Since this project is more a exploratory project, I did not perform hyperparameter tuning
on those hyperparameters, which means that the training outcomes using the above setup may not be
the full potential of this method. The code for this project can be found in my GitHub repository.

1〈·〉 represents an optional argument, but zi and ri cannot both be absent.

6

https://github.com/VictorZXY/function-autoencoder

Figure 2: The training log likelihood2curves of the function autoencoders with respect to iterations.

Table 1: Best holdout log likelihoods2 of the trained function autoencoders for 1-d function regression.

Model Max. num. of context points

10 50 100

Latent -0.6656 -0.7303 -0.6251
Latnet-deterministic -0.4708 -0.5109 -0.3368
Deterministic -0.4963 -0.4871 0.1013

3.2 Results

The training log likelihood (lower bounds for the models involving a latent variable) curves of the
trained function autoencoders with different limitations on the maximum number of context points
are plotted in Figure 2. Table 1 reports the models’ training results using different numbers of context
points, in terms of the best holdout log likelihoods during training. The results clearly show that
although the latent model suffers from underfitting, its performance is significantly boosted when
combined with a deterministic encoder. Although admittedly, there is still a tiny gap between the
latent-deterministic model and the deterministic model, the latent-deterministic model is able to
capture the distribution of the function while the deterministic model can only fit function instances,
which makes such a tradeoff totally acceptable, not to mention that there is still a great potential in
the latent-deterministic model yet to be exploited. Surprisingly, the number of context points does
not affect the model’s performances too much, which is likely to be due to underfitting as well.

Figure 3 shows the regression results (blue ribbon plots) of the trained models on the same holdout
curve (grey line), using different numbers of context points (black ‘plus’ marks). The plots show that
the latent and latent-deterministic models indeed fits the curve more poorly than the deterministic
model, though the latent-deterministic model has regressed much better than the latent model.
However, it is still delightful to see that for both the latent and latent-deterministic models, the
predicted variance (light blue shaded area) at the locations of the curve where there are less context
points are, although only vaguely, higher than those where there are more context points. This
suggests that both the latent and latent-deterministic models can indeed learn that as the number of
context points increases, the uncertainty at that location is reduced, which is similar to the manner
of a GP. In addition, given that the function autoencoder is an NN approximation, it is possible for
the predicted curves to miss the observed context points, as opposed to always going through them
like a GP. However, on the other hand, the function autoencoder scales much better than a GP as the
data size becomes larger, and once the function autoencoder is trained, it can fit more than just one
dataset, as it is able to produce sensible predictions for curves generated using any kernel parameters
observed during training.

The underfitting issue of the latent and latent-deterministic models can be due to the following
reasons:

• no hyperparameter tuning was performed in this experiment, meaning that the current NN
setup is highly likely to be sub-optimal;

• the random sampling of the latent variables introduces instability to the system, resulting
the model to diverge at some unfavourable datapoints, or some unfortunate sampled values.

2lower bounds for the latent and latent-deterministic models.

7

Max number of context points

10 50 100

(a)

(b)

(c)

Figure 3: Regression results of the trained (a) latent model (b) latent-deterministic model (c) de-
terministic model on a holdout 1-dimensional curve generated by a GP (grey line), using different
numbers of context points (black ‘plus’ marks). The blue ribbon plots shows the models’ predicted
means fθ(xij , zi) and standard deviations σ of the curve, within the range fθ(xij , zi)± 1.96σ.

This can also explain the sudden drops on the lower bound training log likelihood curves of
the latent-deterministic model, provided that its training outcomes were even higher than
those of the deterministic model before the dropping took place;

• there might exists other aggregation functions that performs better than taking the mean;
• the mean-aggregation step in the aggregator can be a bottleneck for the model: since taking

the mean across the context latent distributions gives the same weight to each context
point, it can be difficult for the decoder to learn which context points provide more relevant
information for a given set of target points.

4 Conclusion

In this project, I investigated a neural network approximation to Gaussian processes, and introduced
the function autoencoders that can learn to model distributions over random functions. I investigated
the suitable maximum log likelihood estimation for the function autoencoders, and built three different
variants of it, one using only a global latent variable, another using only a global deterministic
representation, and one that combines them both. I trained them on a 1-dimensional function
regression task, using random functions generated by a GP with varying kernel parameters. The
training results show that although a naïve latent model suffers from underfitting, it can be significantly
improved under the assistance of a global deterministic representation, and shows a great potential
for further improvements, with the following possible future extensions:

• perform hyperparameter tuning on the hidden NN structures to increase their expressiveness;
• explore more aggregator choices to better combine the outputs of the encoders;
• introduce a variable-weight mechanism for the context points that enables the function

autoencoder to up-weight more relevant context points for a given set of target points, or to
model relevance within the context points. One promising approach for this would be to
introduce attention to the model, as suggested by Attentive Neural Processes (ANPs) [5].

8

References

[1] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine learning, ser. Adaptive
computation and machine learning. MIT Press, 2006.

[2] M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. W. Teh,
D. J. Rezende, and S. M. A. Eslami, Conditional neural processes, in Proceedings of the 35th
International Conference on Machine Learning, vol. 80. PMLR, 2018, pp. 1704–1713.

[3] M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. A. Eslami, and Y. W. Teh,
Neural processes, arXiv preprint arXiv:1807.01622, 2018.

[4] B. Øksendal, Stochastic differential equations: an introduction with applications, 6th ed.
Springer, 2003, p. 11.

[5] H. Kim, A. Mnih, J. Schwarz, M. Garnelo, S. M. A. Eslami, D. Rosenbaum, O. Vinyals, and Y. W.
Teh, Attentive neural processes, in 7th International Conference on Learning Representations.
OpenReview.net, 2019.

9

	Introduction
	Method
	Stochastic process interpretation
	Function autoencoders
	Model structures

	Experiments
	Experimental setup
	Results

	Conclusion

