
Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 1

A Classroom Teaching Tool for

Graph Theory

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 2

Table of Contents

Appendicies References .. 5

Analysis .. 6

Introduction ... 6

Target users .. 6

Some current existing teaching tools: advantages and drawbacks ... 7

Main functionalities of the project ... 16

Structure of the project.. 17

Requirements of the project .. 18

Record of feedbacks from target users .. 31

Documented Design ... 34

Back-end design ... 34

GUI design .. 35

Vertex control ... 42

Pseudo-code .. 42

DijkstraVertexLabel control ... 46

Pseudo-code .. 46

AccountMenu control .. 49

Pseudo-code .. 49

TaskSettingControls class.. 52

Pseudo-code .. 52

DoTaskControls class... 54

Pseudo-code .. 54

VertexTagControls class .. 56

Pseudo-code .. 56

Graph class .. 57

Pseudo-code .. 57

AdjacencyMatrix class .. 65

Pseudo-code .. 65

AdjacencyList class ... 67

Pseudo-code .. 67

MinimumSpanningTreeExample class .. 69

Pseudo-code .. 69

ShortestPathExample class.. 71

Pseudo-code .. 71

Prim's minimum spanning tree algorithm.. 73

Algorithmic pseudo-code ... 73

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 3

Kruskal's minimum spanning tree algorithm ... 74

Algorithmic pseudo-code[5] .. 74

Dijkstra's shortest path algorithm .. 75

Algorithmic pseudo-code[5] .. 75

MD5 hashing algorithm ... 77

Pseudo-code solutions to requirements ... 79

SQL pseudo-commands list .. 112

Implementation ... 119

Source code for the project ... 119

Completeness of solution.. 120

Example technical skills .. 129

Coding styles... 137

Testing .. 142

Testing plan ... 142

Testing data ... 143

Module 0 – Log in: ... 143

Module 1 – Sign up .. 147

Module 2 – Primary Menu ... 155

Module 2.1 – Teaching Section Menu: Select Topics .. 155

Module 2.1.*.1 – Topic Overview ... 155

Module 2.1.*.2 – Step-by-Step Demonstrations .. 156

Module 2.2 – Task Setting Window (Teacher accounts only).. 157

Module 2.2.1 – Edit Adjacency Matrix ... 165

Module 2.2.2 – Edit Adjacency List ... 165

Module 2.2.3 – Sketch Board .. 166

Module 2.3 – Question Bank Section: List of Questions ... 170

Module 2.3.1 – Add Questions .. 170

Module 2.3.2 – Edit Questions .. 170

Module 2.3.3 – Delete Questions .. 170

Module 2.3.4 – Do Questions .. 171

Module 2.3.4.1 – Mark Questions.. 171

Module 3 – User Accounts ... 174

Module 3.1 – Account Setting .. 174

Module 3.2 – Quit .. 174

Evaluation ... 175

Feedbacks from users .. 175

Mr John Cowley ... 175

Mr Peter Hayes .. 176

Mr Thomas Hurst ... 183

Possible extensions .. 186

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 4

Client meeting log ... 188

References ... 195

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 5

747.45

Appendicies References

Appendix 1 – GUI implementation

Appendix 2 – GraphTeachingTool Source Code

Appendix 3 – Testing Video

Appendix 4 – Original feedback emails from users

Appendix 5 – Transcripts for Testing Video

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 6

Analysis

Introduction

Graph Theory is an important part in A-Level Mathematics and Computer Science subjects. A good majority

of Sixth Form students who are studying Mathematics, Further Mathematics or Computer Science need a

more hands-on approach to this very abstract subject which lies at the heart of Computer Science, and a

detailed and easy-understandable teaching tool is essential to their understandings about Graph Theory.

Unfortunately, however, such a teaching tool is quite rare to find in the majority of academic supportive

websites. This project aims at creating a teaching tool for Graph Theory, particularly in the minimum

spanning tree problem and the shortest path problem, based on Decision Mathematics from various

specifications.

Target users

- Teachers: All the A-Level Mathematics/Computer Science teachers who are teaching Graph Theory

to their students.

- Students: All the A-Level Mathematics/Computer Science students who are struggling with Graph

Theory and are seeking a teaching tool for self-learning.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 7

Some current existing teaching tools: advantages and drawbacks

Consider, for example, the determination of the minimum spanning tree for a given graph. This entails

choosing a graph with a pre-determined number of nodes and edges which will then be used in order to

find the minimum spanning tree. The algorithms used for this determination are the well-known Kruskal's

and Prim's Algorithms.

Here is a sequence of screenshots showing how this problem is solved via Kruskal's Algorithm by

www.mymaths.co.uk[1], a popular supportive website for UK Mathematics students:

Menu of the teaching tool

http://www.mymaths.co.uk/

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 8

Problem description

Algorithm description

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 9

Algorithm run-through (1)

Algorithm run-through (2)

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 10

Algorithm run-though (3)

Algorithm run-through (4)

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 11

This teaching tool has the following advantages:

1. It has step-by-step illustrations about the algorithm;

2. It has a sample graph showing what the algorithm has done on that step by step, which helps

students improve their understanding;

3. It provides objectives and a list of prior knowledge for the users;

4. It uses simple and detailed word to clearly explain the procedure of the algorithm;

5. It is divided into multiple sections, which enables users to select the certain knowledge they want

to teach/learn, and skip the unnecessary points for them for their convenience;

6. It manages to emphasise important points by pausing the illustration, implementing animations,

and highlighting the text of the important points.

However, this teaching tool also has the following drawbacks:

(In my opinion, points 1 and 2 are considered major drawbacks, and points 3 and 4 are minor drawbacks)

1. There is only one sample graph which is pre-designed by the teaching tool, and the users

cannot edit a graph themselves to reinforce their understandings, i.e., the graph is pre-

determined in its pattern and number of vertices and edges;

2. Bugs occurs when moving the scrollbar – here is one example: if the scrollbar is moved when the

previous animation of the table is being played, the animation stops playing, which also disables

future display and makes the status of the graph incorrect, as shown in the following screen shots;

(This is what the page should be as expected)

(This is what the page looks like when the above-mentioned bug occurs)

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 12

Furthermore, here is the screenshots of another online teaching tool, VisuAlgo[2], on analysing this

algorithm:

Sample graph

Algorithm description

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 13

Algorithm run-through

"Draw Graph" section

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 14

This teaching tool has the following advantages:

1. It has step-by-step clear visualisation and analysis about the algorithm;

2. It provides pseudo-code run-throughs that helps the understanding of the algorithm;

3. It supports step backwards and the change of animation for the users' convenience;

4. It provides training section, although not aiming at A-Level students, to help users to improve and

solidify their understanding of the algorithm;

5. It has a "Draw Graph" section, which enables the users to create and edit a graph freely.

This is a very good effort, although the operation on the drawing section is quite complicated.

However, this teaching tool also has a drawback: it is not designed for A-Level students, and it does not

provide a practice section for students to do the algorithms by hand, nor any supplementary

question to be used as exercise.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 15

Consider again, the determination of the shortest path from a given vertex of a graph to another. There

are many algorithms that can successfully solve this problem, a popular one of which is the Dijkstra's

Algorithm, which is also taught in A-Level Decision Mathematics. Here is the homework section of Dijkstra's

Shortest Path Algorithm in www.mymaths.co.uk:

Unfortunately, this section of the teaching tool has the following drawbacks:

1. Users cannot design graphs and questions on their own;

2. The contents are very cluttered, making it hard for students to clearly understand the problem;

3. The graph is poorly drawn, with the box of vertex E overlapping with the edges EF and EH, and is

overall confusing for students to obtain information and completing the boxes;

My project will refer to this as well as other similar teaching tools, and make improvements based on the

advantages and drawbacks of those teaching tools.

http://www.mymaths.co.uk/

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 16

Main functionalities of the project

This project will be an offline Windows application with the following functionalities:

1. A thorough and clear explanation for a certain algorithm with step-by-step illustration on sample

graphs:

- Kruskal's Minimum Spanning Tree Algorithm

- Prim's Minimum Spanning Tree Algorithm

- Dijkstra's Shortest Path Algorithm

2. A task setting section for teachers to design tasks on their own and set prep to students, with the

answers automatically computed by the system. This increases the flexibility and variety of the

resources of the questions of each topic.

3. Users are allowed to build a graph on their own in the following three forms:

- Adjacency Matrix

- Adjacency List

- Manually drawing the graph on the Sketch Board

The user-created graphs will be sent to other sections of the project to work on with, including the

step-by-step demonstrations in the Teaching Section, the Task Setting Section, and the Question

Bank Section. Turning a real-world problem into a mathematical problem involves abstraction. This

is one of the main areas which teachers find difficult to teach and students find difficult to grasp

abstractly. This functionality will help students get practice with abstraction by allowing them to

create the underlying graph for a given problem.

4. A Question Bank Section for students to practice on past papers and the teachers' self-designed

questions, with automatic marking functionality and can help students review the incorrect answers.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 17

Structure of the project

The structure of this project is shown in the following hierarchical diagram:

NB The user account system is a stand-alone module placed at the menu bar of the teaching tool.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 18

Requirements of the project

The requirements of this project are listed in the following tables:

Table 1 – Log in, Sign up and Primary Menu:

Module Inputs Processing Outputs

0

Log in

- 2 textboxes for users to input their

usernames and passwords;

- A "Log in" button;

- A linked table named "New user –

sign up" for a new user to sign in for

an account.

- Hidden labels alongside the

textboxes for displaying error

messages or alerts (visible only

when needed)

Log in operation:

1. If there is no input for the username/password, then reject the log in request,

with returning the error message "Please enter your username/password!"

2. Query account with the input username in the database;

3. If there is no account in the database that matches the input username, then

reject the log in request, with returning the error message "The username you

entered does not exist!"

4. Hash the input password, then check the hashed value with the hashed

correct password value stored in the account information in the database;

5. If the hashed values do not match (i.e., the input password does not match

the stored password), then reject the log in request, with returning the error

message "The password you entered is incorrect!"

6. If the input password matched the stored password, then approve the log in

request, and show the username on the menu bar:

1) If the account is a teacher account, the system should provide it the

functionalities with access authorities for a teacher account;

2) If the account is a student account, the system should provide it the

functionalities with access authorities for a student account.

(Details to be followed in the Table 6 – User Account)

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 19

Module Inputs Processing Outputs

0

Log in

(cont.)

 Sign up operation:

If the linked label "New user – sign up" is clicked, proceed to the Sign up window

(Reference: Module 1 – Sign up)

1

Sign up

If the linked label "New user – sign up"

in "Module 0 – Log in" is clicked,

proceed to this window.

This window includes:

- 2 radio buttons for a new user to

choose an account type:

- Teacher Account

- Student Account

- Textboxes for a new user to enter

their personal information:

- Username

- Password & Repeat Password

- Forename

- Surname

- Date of Birth

- Email

- School

- A "Sign up" button

- Hidden labels that shows error or

alert message in need

Validation: Rejection:

1. Input username has already been used by other account;

2. Input username is invalid;

3. Input password is invalid;

4. Input password and the input repeat password do not equal;

5. Input for any compulsory information is empty;

6. Input for any personal information is invalid.

Rejection:

- Output the error message;

- Stay in the Sign up window.

Validation: Approval:

No input data is rejected

Accept the sign up request:

- Save the approved new account in the database;

- Go to the Log in window. (Reference: Module 0 – Log in)

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 20

Module Inputs Processing Outputs

2

Primary Menu

- 3 buttons, each represents a part of

the main section:

- Teaching Section

- Task Setting Section

- Homework Section

Go to the selected part of the main

section

The selected part of the main section

Table 2 – Teaching Section:

Module Inputs Processing Outputs

2.1

Teaching Section Menu:

Select Topics

Buttons for different topics:

- Module 2.1.1: Primm's Minimum

Spanning Tree Algorithm

- Module 2.1.2: Kruskal's Minimum

Spanning Tree Algorithm

- Module 2.1.3: Dijkstra's Shortest

Path Algorithm

Go to the topic overview window for

the selected topic

The topic overview window for the

selected topic

2.1.*.1

Topic Overview

Show the objectives/prerequisites

for learning the selected algorithm;

Buttons of the example graphs to carry

out the step-by-step demonstrations:

- For Prim’s algorithm, both graphical

and tabular version are supported;

- For Dijkstra’s algorithm, both

directed and undirected graphs are

supported.

Go to the step-by-step demonstration window for the example graph:

If an example graph is selected, go to the step-by-step demonstration window,

to perform step-by-step demonstrations of the previously selected algorithm on

the selected example graph.

(Reference: Module 2.1.*.2 – Step-by-Step Demonstrations)

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 21

Module Inputs Processing Outputs

2.1.*.2

Step-by-Step

Demonstrations

(Details vary in different algorithms)

Provide a full algorithm description,

separated by steps;

Show the selected example graph

on the window;

(Details vary in different algorithms)

Step forward:

On clicking the step forward button:

- Go to the next step;

- Highlight the current step;

- Show corresponding text explanations of the step;

- Visually show the changes on graph due to the current step of the algorithm;

- The teaching section will not proceed unless the step forward/backward button

is clicked.

Step backward:

On clicking the step backward button: go to the previous step with exactly the

same previous state.

Illustrations on graph:

For each step, visually show the changes on graph due to the current step of

the algorithm. This includes highlighting the vertices, edges or weight labels,

updating values, and showing the periodical results up to the current step.

User operations on graph:

The diagram should be editable if the algorithm enables the user to choose a

random node/edge, such as: choosing a starting/finishing vertex, or choosing

from multiple vertices/edges that are equally optimal.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 22

Module Inputs Processing Outputs

2.1.*.2

Step-by-Step

Demonstrations

(cont.)

 Finishing-up:

When the demonstration has finished (i.e. the algorithm has been proceeded to

the final step):

- Show the final results;

- Show all the necessary information;

- Enable the users to go back to a certain step, or start over again.

Step-by-step demonstrations on a user-chosen graph instead of the

default example graphs:

All the above-described processing will be unchanged, with only the default text

explanations, diagram and dry-run table replaced by those in the form for the

user-chosen graph.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 23

Table 3 – Task Setting Section (Teacher accounts only):

Module Inputs Processing & Outputs

2.2

Task Setting Window

- A textbox for users to enter a general description for the

question;

- Buttons for users to create a graph, in either of the

following forms:

- Adjacency matrix

- Adjacency list

- Sketch Board

- An "Add Task" button and a "Delete Task" button for users

to flexibly add or delete subtasks;

- Drop-down menus for users to choose a task from:

- Find the minimum spanning tree(s) for the designed

graph using Prim's/Kruskal's Algorithm

- Find the shortest path from one node to another using

Dijkstra’s Algorithm

- Draw a graph from its adjacency list/matrix, or vice

versa

- Textboxes for users to set the corresponding starting

node and the destination node for the task, if needed;

- A "Save" button.

Create a graph via adjacency matrix:

Proceed to the Edit Adjacency Matrix window.

(References: Module 2.2.1 – Edit Adjacency Matrix)

Create a graph via adjacency list:

Proceed to the Edit Adjacency List window.

(References: Module 2.2.2 – Edit Adjacency List)

Create a graph via the Sketch Board:

Proceed to the Sketch Board window.

(References: Module 2.2.3 – Sketch Board)

Add, edit, and delete a subtask:

Users can flexibly add, edit or delete a subtask.

Validation:

Check if the all the entries of the question is valid. This

includes:

- Check if the inputs are invalid

- Check if the question asks for finding a Minimum

Spanning Tree for a directed graph

- Check if the saved graph is invalid

- Check if the vertices in the subtasks do not exist in the

saved graph

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 24

Module Inputs Processing & Outputs

2.2

Task Setting Window

(cont.)

 Save the question:

On clicking the "Save" button:

(all entries have been validated)

1. Store the question in the database;

2. Store the corresponding graph in the database;

3. Solve the user-set subtasks and store the answer in the

database;

4. Go back to the Primary Menu (Reference: Module 2 –

Primary Menu: Select Sections)

2.2.1

Edit Adjacency Matrix

- A 26×26 table for users to enter the entries of the

adjacency matrix;

(26 is the maximum number of vertices allowed to be

created by the system)

- A "Save" button.

Validation:

Check if the all the entries of the adjacency matrix is valid.

This includes:

- Check if any of the entries is not a non-negative real

number.

Save the graph:

On clicking the "Save" button:

(all entries have been validated)

- Store the adjacency matrix as an object in the code.

- Proceed to the section that had called it.

- If it is the Task Setting Window (Reference: Module

2.2 – Task Setting Window) that had called it, the

adjacency matrix will be stored in the database when

the whole question is saved.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 25

Module Inputs Processing & Outputs

2.2.2

Edit Adjacency List

- A list of 26 vertices for users to enter the adjacent edges

of each vertices in the adjacency list;

(26 is the maximum number of vertices allowed to be

created by the system)

- A "Save" button.

Validation:

Check if the all the entries of the adjacency list is valid. This

includes:

- Check if a weight is entered without a preceding

vertex name;

- Check if an entered weight is not a non-negative

number.

Save the graph:

On clicking the "Save" button:

(all entries have been validated)

- Store the adjacency list as an object in the code.

- Proceed to the section that had called it.

- If it is the Task Setting Window (Reference: Module

2.2 – Task Setting Window) that had called it, the

adjacency list will be stored in the database when the

whole question is saved.

2.2.3

Sketch Board

- A menu consisting of:

- A "Vertex" button

- An "Edge" button

- A "Tag" button

- A plain board for users to design graphs

Create a vertex:

- On selecting the "Vertex" button, when users single click

on the sketch board, a new vertex with default name is

created on the location of single click;

Edit a vertex/edge:

- Users can change a vertex's position by dragging that

vertex;

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 26

Module Inputs Processing & Outputs

2.2.3

Sketch Board

(cont.)

 - On selecting the "Tag" button, when users double click on

a vertex, a separate temporary window is made visible for

the user to change the name and the adjacent edges of

the clicked vertex;

Create an edge:

- On selecting the "Edge" button, when users single click

on the Sketch Board at a position and drag to another

position, a new edge with default name and weight is

created between the vertex on the point of mouse down

to the vertex on the point of mouse up;

- If there is no vertex on either position, then create the

vertex;

- On clicking and hovering on the "Edge" button, a

"Directed Edge" and a "Undirected Edge" button is made

visible for users to set the property of the edges;

Save the graph:

- Store the graph as an object in the code.

- Proceed to the section that had called it.

- If it is the Task Setting Window (Reference: Module 2.2 –

Task Setting Window) that had called it, the graph will be

stored in the database when the whole question is saved.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 27

Module Inputs Processing & Outputs

2.2.3

Sketch Board

(cont.)

 NB

- Only simple graphs are allowed in the Sketch Board

module;

- Only edges with positive weights are allowed in the

Sketch Board module.

Table 4 – Question Bank Section:

Module Inputs Processing & Outputs

2.3

Question Bank Section:

List of Questions

Query the questions from the

database:

- A list of all the questions stored in

the database

Filter/sort the questions:

- Users should be able to filter the

questions, or sort the questions in

ascending/descending order, with

respect to the following Properties:

- Question name

- Date modified

- Related topic

- Problem difficulty

Add questions: (teacher accounts only)

On clicking the “Add Question” button:

Open a new Task Setting Window.

(Reference: Module 2.2 – Task Setting Window)

Edit questions: (teacher accounts only)

On selecting a question and clicking the "Edit Question" button:

Proceed to the Task Setting Window, with the current content of the question

loaded in place. (Reference: Module 2.2 – Task Setting Window)

Delete questions: (teacher accounts only)

On selecting a question and clicking the "Delete Question" button:

Delete the question from the database.

Do questions:

On selecting a question and clicking the "Do Question" button:

Proceed to the Do Question window. (Reference: Module 2.3.4 – Do Questions)

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 28

Module Inputs Processing & Outputs

2.3

Question Bank Section:

List of Questions

(cont.)

Buttons for operations on questions:

- Add Question

- Edit Question

- Delete Question

- Do Question

2.3.1

Add Questions

(Teacher Accounts Only)

- Open a new Task Setting Window.

(Reference: Module 2.2 – Task Setting Window)

- Once the new question is saved:

1. Store the new question and graph in the database;

2. Solve the new task and store the answer in the database;

3. Go back to the List of Questions window (Reference: Module 2.3 – List of Questions)

2.3.2

Edit Questions

(Teacher Accounts Only)

- Proceed to the Task Setting Window, with the current content of the question loaded in place.

(Reference: Module 2.2 – Task Setting Window)

- Once the edited question is saved:

1. Store the new question and graph in the database (overwrite the previous one);

2. Solve the new task and store the answer in the database (overwrite the previous one);

3. Go back to the List of Questions window (Reference: Module 2.3 – List of Questions)

2.3.3

Delete Questions

(Teacher Accounts Only)

- Delete the selected question;

- Refresh the list of questions.

(Reference: Module 2.3 – List of Questions)

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 29

Module Inputs Processing & Outputs

2.3.4

Do Questions

Query the content of the question:

- Show the content of the selected

question on labels. This includes:

- Question name

- Problem description

- Subtasks

- Show the graph of the selected

question in the form of adjacency

matrix/list, if any, on a table

- Show the graph of the selected

question, if any, on a picture box

Textboxes for users to input their

answers when needed

A "Mark it" button

Mark the question:

- When the “Mark it” button is clicked, mark the users-entered answers based

on the mark scheme stored in the database (partial marks are allowed)

(Reference: Module 2.3.4.1 – Mark Questions)

- The answers that the users enter can always be changed and re-marked on

users’ demands.

2.3.4.1

Mark Questions

For each subtask, provide:

- Labels showing the marks awarded

for the questions

- A “Show Answer” button

- A "Step-by-Step Explanation" button

Show answer:

On clicking the “Show Answer” button, show the answer of the subtask.

Step-by-Step Explanation for a subtask:

On clicking the "Step-by-Step Explanation" button:

Proceed to the Step-by-Step Demonstration Module, and apply the needed

algorithm on the graph in the question.

(Reference: Module 2.1.*.2 – Step-by-Step Demonstrations)

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 30

Table 5 – User Accounts:

Module Inputs Processing & Outputs

Types of Accounts:

Access Authorities

A teacher account can set questions via the Task Setting Section, while a student account cannot.

A teacher account can add, edit, or delete questions via the Question Bank Section, while a student account cannot.

All the other modules can be accessed by both types of accounts.

3.1

Account Setting

Query the account information:

Proceed to the Sign up window, with

the current account information loaded

in place.

(Refrence: Module 1 – Sign up)

- Users can change all the account information (including the username),

provided that they are valid;

- Users must retype the password, whether or not they wish to change it.

- The validation rule remains the same as the Sign up module;

(Reference: Module 1 – Sign up)

Update account information:

- Once the updated account information is accepted, update the account

information in the database, and proceed to the window where the Account

Setting request is called.

3.2

Quit

Quit the system.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 31

Record of feedbacks from target users

In order to be more suitable and satisfactory to the users' requirements, as well as to learn from

professional ideas, interviews with several teachers in my school has been conducted.

Below is the list of the interviewee teachers that have participated in the interviews:

- Mr John Cowley (JHC): Head of Mathematics Department of Ellesmere College;

- Mr Peter Hayes (PJH): Teacher of Mathematics of Ellesmere College, in charge of teaching

Decision 1 for A-Level further mathematics students;

- Dr Sarah Shakibi (HSS): Head of Computer Science Department and Teacher of Mathematics of

Ellesmere College.

The interviewed questions and responses are as follows:

1. How do you teach graph algorithms, such as minimum spanning trees and Dijkstra's shortest

paths, to your students?

JHC: Firstly, I would put various of PowerPoints and notes on the board to explain the algorithms. Then,

I would show some examples, usually in the textbooks, and apply the algorithm on those examples to

the students, and I would let the students to do other examples themselves.

PJH: I start with the algorithms, discuss the objectives using real-life examples, such as satnav for the

shortest path algorithm, and "explain" the algorithm by just following the instructions. I use some good

videos/PowerPoints to show the algorithms step by step.

HSS: I would either have to use the textbook or rely on the things in wiki, which is not very accurate,

not very interesting, and not very interactive. There are resources around the world, but there is not a

single program that covers all the knowledge.

2. How do you find those algorithms explained in the Decision mathematics textbooks / Computer

Science textbooks?

JHC: The current textbook is not the best but it is dedicated to our course. To be honest, I do not think

there are enough examples on the book, but there are probably a bigger range of examples on the

internet. In the textbook, there were not enough subsidiary questions related to the particular

algorithms as the exam does. Besides, what is lacking in the textbook is the understanding outside the

algorithm: the textbooks only explain the algorithm itself and does not consider different situation and

change in the diagram or algorithm steps.

PJH: The minimum spanning tree algorithm and the Dijkstra's algorithm are well explained by the

textbook. In the heart of the Decision mathematics, those three are fairly straight forward and the

applications of the algorithms are clearer. However, the travelling salesman problem is not very well

explained.

HSS: The knowledge in the textbooks is quite dry, and there are not many real-life examples in it. In

fact, we are trying to leave the textbook as much as we can. The textbooks are good resources, but

they should not be the only resources in the nowadays lessons.

3. Do you think your students generally response or understand well on those topics?

JHC: Some do and some do not.

PJH: I think students often respond well in those three easy ones (i.e., Kruskal's and Prim's minimum

spanning tree algorithms, and Dijkstra's shortest path algorithm), but they do not do really well in the

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 32

hard ones (for example, the Hamiltonian cycle one). The biggest problem when I am teaching Decision

mathematics is the language for international students. In the previous years, students sometimes

choose the wrong algorithms for a question. Now that there is an answer book in the exam, where

boxes and matrices are drawn, it is easy for a student to choose the right algorithm.

HSS: For further mathematics students, Decision 1 and Decision 2 are not a problem. However,

compared with Mechanics and Statistics, Decision mathematics are very abstract.

4. Have you ever used computer teaching tools to help you illustrating how the algorithms work?

What are they?

JHC: No.

PJH: I use TI-Nspire to teach the Simplex algorithm, but not many on the others.

HSS: No. There is only a website that compares different algorithms, and to my knowledge, I do not

find any of such kind of teaching tools, and even if there are, they will be very expensive and not

affordable.

5. Do you think computer teaching tools will be helpful to students' understanding?

JHC: I would think it would, because I think it would give practical examples to the algorithms rather

than just some graphs in the exercise.

PJH & HSS: Definitely yes.

6. Do you think if there are drawbacks in the current teaching tools you use? What are they? How

do you think those teaching tools should be improved?

JHC: PowerPoints can be very slow, particularly when they animate the display (I have never written

PowerPoints myself, I just use the PowerPoints that I purchase), and the fancy displays are sometimes

distractive and too long. I also give every pupil a photocopy of my note, and I put my note on the board

simultaneously, so that the students can take notes while I am teaching. In fact, I use this in most of

my mathematics teaching.

PJH: PowerPoints and videos sometimes go a little bit too slowly, and it is impossible to deviate, for

example, in Prim's minimum spanning tree algorithm, where the algorithm says select any node, the

PowerPoints can only start at a pre-determined node, and when students randomly pick up which node

to start, the node may not be prepared in the PowerPoint. I think it can be improved by using a branched

PowerPoint instead of a linear one. The advantage of a PowerPoint is the students can take them after

class and use them to review their coursework themselves. In fact, the more advanced the

mathematics, the fewer resources there are. In lower school, there are a lot of online resources, but in

A-Levels, the resources are not very much, because the number of people who can make resources

are fewer, and the number of people who need the resources are fewer as well.

HSS: We need tools for students to start working from scratch, and current teaching tools do not work

very smoothly.

7. Do you think a computer teaching tool where users can design graphs themselves would

improve their understanding towards the graph algorithms?

JHC: I have never seen such a teaching tool like that, but I would definitely say yes. Hands-on

experience is always a good thing in teaching.

PJH: Probably. You need to be careful about students designing graphs themselves, for sometimes

they make wrong connections. You might want to have a set of graphs for students to select from,

instead of letting them to design graphs themselves.

HSS: Very much yes.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 33

8. If I am going to offer you a computer teaching tool for graph theories and algorithms, what do

you want it to have to make it best to help you teaching?

JHC: I would like a clear statement of the algorithm, a series of (for example, five or six) examples

stating from very simple to more complex ones, and extra supplementary questions. Anything visual is

a good thing, so a visual diagram will be very helpful. I would like to see an animated diagram to

illustrate each step of an algorithm, so that the students can see what is happening on the algorithm.

PJH: It should be able to demonstrate the algorithms, set questions (the disadvantage of the textbook

is there is not enough questions), and track student's understanding. Ideally, it should enable the users

to skip steps in case the whole process goes too slow.

HSS: These are my general requirements for it:

1) It should have a friendly user interface with login menu for teachers and students (both can

use same entry menu);

2) It should have a teaching module for students focussing on the basics of graph theory –

students should be able to see examples of basic graphs (of all types) and be shown how to

construct these from the adjacency list or matrix;

3) It should have an exercise area where students can then practice building graphs themselves

using the adjacency list or matrix for a given graph generated by the system;

4) It should have a second teaching module focussing on the basics of three optimisation

algorithms: Prim's, Kruskal's, Dijkstra's;

5) Students should be able to see clearly laid out demonstrations of each algorithm on a not very

complex graph;

6) It should have an exercise area where students can then practice solving problems for a given

optimisation algorithm;

Based on those responses by the teachers, several pivotal conclusions with regards to the requirements

of the computer teaching tool can be drawn:

1. The computer teaching tool should provide a substantial number of examples and exercises for its

users.

2. The computer teaching tool should be able to use an animated, visual diagram to illustrate the

process of the algorithms to help the students' understanding.

3. The computer teaching tool should be as brief as possible, and eliminate unnecessary and

distractive animations, provided that a clear, essential statements of the algorithms are given. The

computer teaching tool should also enable its users to skip steps for their convenience.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 34

Documented Design

Back-end design

This project will use a relational database whose schema is shown by the following diagram (produced by

MySQL Workbench[3])

NB

- represents a not null attribute;

- represents a nullable attribute;

- represents a primary key attribute;

- represents a foreign key attribute;

- ADJACENCYMATRICES.Edges(i, j) represents 26×26=676 attributes in the actual design of the table

ADJACENCYMATRICES, recording the weights between each two vertices (and equals 0 if there is

no edge between two vertices);

- ADJACENCYMATRICS.Vertices represents 26 Boolean attributes in the actual design of the table

ADJACENCYMATRICES, recording if each vertex is used in the graph.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 35

GUI design

This is the general structure of the GUI design of each page of this project:

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 36

The structures of GUI designs for different pages varies, for example:

Algorithm Topic Overview:

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 37

Algorithm Step-by-Step Demonstration:

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 38

Task Setting Page:

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 39

Sketch Board:

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 40

Question Bank:

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 41

Do Question Page:

The exact GUI implementation of the system is shown in Appendix 1 - GUI implementation.pdf.

It reflects the majority of the modules.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 42

Vertex control

This user control contains:

- A round, transparent region with a solid black border

- A label labelName in the middle of the region showing the name of the vertex

Sample design:

Universally supported operations: (There are other operations that work on certain modules only)

- Drag to change the location of the vertex

- Press BACKSPACE or DELETE to delete this vertex, along with all the edges connected to it

Universal events: (There are other events that work on certain modules only)

- Paint

- MouseDown

- MouseMove

- MouseUp

- KeyPress

Pseudo-code
PUBLIC CLASS Vertex INHERITS UserControl

 DEFINE PRIVATE STRUCT AdjacentEdge

 vertex: Vertex

 weight: REAL

 END STRUCT

 DEFINE PRIVATE adjacentEdges: LIST<AdjacentEdge>

 DEFINE PRIVATE selected: BOOLEAN

 DEFINE PRIVATE clicked: BOOLEAN

 DEFINE PRIVATE selectable: BOOLEAN

 DEFINE PRIVATE draggable: BOOLEAN

 PUBLIC CONSTRUCTOR Vertex(STRING name, INTEGER x, INTEGER y)

 THIS.Name ← "vertex" + name

 THIS.Location ← NEW POINT(x – THIS.Width / 2, y – THIS.Height / 2)

 THIS.labelName.Text ← name

 END CONSTRUCTOR

 PUBLIC CONSTRUCTOR Vertex(STRING name, POINT centre)

 THIS.Name ← "vertex" + name

 THIS.Location ← NEW POINT(centre.X – THIS.Width / 2,

centre.Y – THIS.Height / 2)

 THIS.labelName.Text ← name

 END CONSTRUCTOR

 PUBLIC FUNCTION POINT GetCentreLocation()

 DEFINE x, y: INTEGER

 x ← THIS.Location.X + THIS.Width / 2

 y ← THIS.Location.Y + THIS.Height / 2

 RETURN NEW POINT(x, y)

 END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 43

 PUBLIC FUNCTION CHAR GetName()

 RETURN THIS.Name.Trim("vertex")

 END FUNCTION

 PUBLIC FUNCTION BOOLEAN IsSelected()

 RETURN THIS.selected

 END FUNCTION

 PUBLIC FUNCTION BOOLEAN IsClicked()

 RETURN THIS.clicked

 END FUNCTION

 PUBLIC FUNCTION BOOLEAN IsSelectable()

 RETURN THIS.selectable

 END FUNCTION

 PUBLIC FUNCTION BOOLEAN IsDraggable()

 RETURN THIS.draggable

 END FUNCTION

 PUBLIC FUNCTION REAL GetDistance(Vertex v)

 DEFINE centre1, centre2 : POINT

 centre1 ← v.GetCentreLocation()

 centre2 ← THIS.GetCentreLocation()

 RETURN √(centre1.X - centre2.X)2 + (centre1.Y - centre2.Y)2
 END FUNCTION

PUBLIC FUNCTION BOOLEAN ContainsEdge(Vertex v)

 FOREACH AdjacentEdge edge IN THIS.adjacentEdges

 IF edge.vertex = v

 RETURN TRUE

 END IF

 END FOR

 RETURN FALSE

 END FUNCTION

 PUBLIC FUNCTION REAL GetEdge(Vertex v)

 FOREACH AdjacentEdge edge IN THIS.adjacentEdges

 IF edge.vertex = v

 RETURN edge.weight

 END IF

 END FOR

 RETURN 0

 END FUNCTION

 PUBLIC FUNCTION LIST<Vertex> GetEdges()

 DEFINE output: LIST<Vertex>

 FOREACH AdjacentEdge edge IN THIS.adjacentEdges

 output.Add(edge.vertex)

 END FOR

 RETURN output

 END FUNCTION

PUBLIC FUNCTION INTEGER GetNumberIndex()

 RETURN THIS.GetName() - 'A'

 END FUNCION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 44

 PUBLIC FUNCTION VOID SetName(CHAR name)

 THIS.Name ← "vertex" + name

 THIS.labelName.Text ← name

 END FUNCTION

 PUBLIC FUNCTION VOID SetSelected(BOOLEAN status)

 THIS.selected ← status

 END FUNCTION

 PUBLIC FUNCTION VOID SetClicked(BOOLEAN status)

 THIS.clicked ← status

 END FUNCTION

 PUBLIC FUNCTION VOID SetSelectable(BOOLEAN status)

 THIS.selectable ← status

 END FUNCTION

 PUBLIC FUNCTION VOID SetDraggable(BOOLEAN status)

 THIS.draggable ← status

 END FUNCTION

 PUBLIC FUNCTION VOID SetEdge(Vertex v, REAL weight)

 DEFINE tempEdge, edgeToRemove: AdjacentEdge

 tempEdge.vertex ← v

 tempEdge.weight ← weight

 FOREACH AdjacentEdge edge IN THIS.adjacentEdges

 IF edge.vertex = v

 edgeToRemove ← edge

 END IF

 END FOR

 THIS.adjacentEdges.Remove(edgeToRemove)

 THIS.adjacentEdges.Add(tempEdge)

 END FUNCTION

 PUBLIC FUNCTION BOOLEAN SetEdge(Vertex v)

 SetEdge(v, 1)

 END FUNCTION

 PUBLIC FUNCTION VOID RemoveEdge(Vertex v)

 DEFINE edgeToRemove: AdjacentEdge

 FOREACH AdjacentEdge edge IN adjacentEdges

 IF edge.vertex = v

 edgeToRemove ← edge

 END IF

 END FOR

 adjacentEdges.Remove(edgeToRemove)

 END FUNCTION

EVENT Vertex_Paint

 IF THIS.IsSelected() = TRUE

 <Highlight the border>

 ELSE

 <Do not highlight the border>

 END IF

END EVENT

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 45

EVENT Vertex_MouseDown

 IF THIS.IsSelectable() = TRUE

 THIS.SetSelected(NOT THIS.IsSelected())

 END IF

 THIS.Refresh()

 THIS.SetClicked(TRUE)

END EVENT

EVENT Vertex_MouseMove

 IF THIS.IsClicked() = TRUE AND THIS.IsDraggable() = TRUE

 THIS.SetSelected(TRUE AND THIS.IsSelectable())

 DEFINE x, y: INTEGER

 x ← THIS.Location.X + MOUSE_CLICK_POSITION.X - THIS.Width / 2

 y ← THIS.Location.Y + MOUSE_CLICK_POSITION.Y - THIS.Height / 2

 THIS.Location ← NEW POINT(x, y)

 END IF

END EVENT

EVENT Vertex_MouseUp

THIS.SetClicked(FALSE)

END EVENT

 EVENT Vertex_KeyPress

 IF KEY_VALUE = DELETE OR KEY_VALUE = BACKSPACE

 THIS.Dispose()

 END IF

 END EVENT

END CLASS

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 46

DijkstraVertexLabel control

This user control contains:

- 4 boxes, each containing one of the 4 key values:

- Vertex name

- Order of labelling

- Permanent label

- Working values (temporary label)

- A label labelVertexName in the top-left box showing the name of the vertex

- A textbox textBoxOrder in the top-middle box showing the order of labelling

- A textbox textBoxFinalLabel in the top-right box showing the permanent label

- A textbox textboxWorkingValues in the bottom box showing the working values

Sample design:

Supported operations:

- Read and write the value of the order of labelling

- Read and write the value of the permanent label

- Read and write the value of the temporary label

- Highlight and un-highlight itself on demand in Step-by-Step Demonstration mode

Events:

No event needed.

Pseudo-code
PUBLIC CLASS DijkstraVertexLabel INHERITS UserControl

 PUBLIC CONSTRUCTOR DijkstraVertexLabel(CHAR vertexName, POINT location)

 THIS.labelVertexName.Text ← vertexName

 THIS.Location ← location

 END CONSTRUCTOR

 PUBLIC FUNCTION CHAR GetVertexName()

 RETURN THIS.labelVertexName.Text

 END FUNCTION

PUBLIC FUNCTION INTEGER GetNumberIndex()

 RETURN THIS.GetVertexName() – 'A'

 END FUNCTION

 PUBLIC FUNCTION INTEGER GetLabellingOrder()

 IF THIS.textBoxOrder.Text = NULL

 RETURN -1

 ELSE

RETURN THIS.textBoxOrder.Text

 END IF

 END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 47

 PUBLIC FUNCTION REAL GetFinalLabel()

 IF THIS.textBoxFinalLabel.Text = NULL

 RETURN -1

 ELSE

 RETURN THIS.textBoxFinalLabel.Text

 END IF

 END FUNCTION

 PUBLIC FUNCTION STRING GetWorkingValues()

 RETURN THIS.textBoxWorkingValues.Text

 END FUNCTION

 PUBLIC FUNCTION POINT GetCentreLocation()

 DEFINE x, y: INTEGER

 x ← THIS.Location.X + THIS.Width / 2

 y ← THIS.Location.Y + THIS.Height / 2

 RETURN NEW POINT(x, y)

 END FUNCTION

 PUBLIC FUNCTION REAL GetDistance(DijkstraVertexLabel v)

 DEFINE centre1, centre2 : POINT

 centre1 ← v.GetCentreLocation()

 centre2 ← THIS.GetCentreLocation()

 RETURN √(centre1.X - centre2.X)2 + (centre1.Y - centre2.Y)2
 END FUNCTION

 PUBLIC FUNCTION VOID SetReadOnly(BOOLEAN status)

 textBoxFinalLabel.ReadOnly ← status

 textBoxWorkingValues.ReadOnly ← status

 textBoxOrder.ReadOnly ← status

 END FUNCTION

 PUBLIC FUNCTION VOID SetVertexName(CHAR vertexName)

 THIS.labelVertexName.Text ← vertexName

 END FUNCTION

 PUBLIC FUNCTION VOID SetLabellingOrder(INTEGER order)

 THIS.textBoxOrder.Text ← order

 END FUNCTION

 PUBLIC FUNCTION VOID SetFinalLabel(REAL distance)

 THIS.textBoxFinalLabel.Text ← distance

 END FUNCTION

 PUBLIC FUNCTION VOID SetWorkingValues(STRING workingValues)

 THIS.textBoxWorkingValues.Text ← workingValues

 END FUNCTION

 PUBLIC FUNCTION VOID UpdateWorkingValues(REAL workingValue)

 THIS.textBoxWorkingValues.Text += workingValue + " "

 END FUNCTION

 PUBLIC FUNCTION VOID Finalise(REAL distance, INT order)

 SetLabellingOrder(order)

 SetFinalLabel(distance)

 END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 48

 PUBLIC FUNCTION VOID FocusOn()

 <Highlight THIS.labelVertexName>

 <Highlight THIS.textBoxOrder>

 <Highlight THIS.textBoxFinalOrder>

 <Highlight THIS.textBoxWorkingValues>

 END FUNCTION

 PUBLIC FUNCTION VOID FocusOff()

 <Do not highlight THIS.labelVertexName>

 <Do not highlight THIS.textBoxOrder>

 <Do not highlight THIS.textBoxFinalOrder>

 <Do not highlight THIS.textBoxWorkingValues>

 END FUNCTION

END CLASS

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 49

AccountMenu control

This user control contains:

- A label labelAccountName showing the name of the user account

- A picturebox pictureBoxAccountOptions that maintains whether panelAccountOptions

should be shown or hidden

- A panel panelAccountOptions (hidden by default) showing the two account options of the user

account when a user clicks pictureBoxAccountOptions:

- A button buttonAccountSettings inside panelAccountOptions that opens the Sign

up window for the Account Setting functionality

(Refrence: Module 1 – Sign up, Module 3.1 – Account Setting)

- A button buttonQuit inside panelAccountOptions that quits the system when clicked

(Refrence: Module 3.2 – Quit)

Sample design:

Supported operations:

- Click pictureBoxAccountOptions to show or hide panelAccountOptions

- Click buttonAccountSettings to change the account information

- Click buttonQuit to quit the system

Events:

- pictureBoxAccountOptions: Click

- buttonAccountSettings: Click

- buttonQuit: Click

- External events called by this user control:

- WindowSignUp.buttonSignUp: Click

- WindowSignUp: Closed

Pseudo-code
PUBLIC CLASS AccountMenu INHERITS UserControl

DEFINE PUBLIC accountID: INTEGER

 DEFINE PUBLIC username: STRING

 DEFINE PUBLIC accountType: STRING

 DEFINE PRIVATE sql: SQL_COMMAND

 DEFINE PRIVATE reader: SQL_DATA_READER

 DEFINE PRIVATE windowSignUp: WindowSignUp

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 50

 PUBLIC CONSTRUCTOR Vertex(INTEGER accountID, STRING username,

STRING accountName, STRING accountType)

 THIS.accountID ← accountID

 THIS.userName ← username

 THIS.labelAccountName.Text ← accountName

 THIS.accountType ← accountType

 END CONSTRUCTOR

 EVENT PictureBoxAccountOptions_Click

 THIS.panelAccountOptions.Visible ← NOT THIS.panelAccountOptions.Visible

 IF THIS.panelAccountOptions.Visible = TRUE

 THIS.pictureBoxAccountOptions.Image ←

 ELSE

 THIS.pictureBoxAccountOptions.Image ←

 END IF

 END EVENT

 EVENT ButtonAccountSettings_Click

 THIS.ParentWindow.Hide()

 windowSignUp ← NEW WindowSignUp()

 windowSignUp.Closed.Add(NEW EVENT(WindowSignUp_WindowClosed))

 windowSignUp.buttonSignUp.Click.Add

(NEW EVENT(WindowSignUp_ButtonSignUp_Click))

 sql ← <SQL 3.1_1 – Query current account information>

 reader ← DATABASE.ExecuteCommand(sql)

 reader.ReadNext()

 windowSignUp.textBoxUserName.Text ← reader["Username"]

 IF accountType = "TEACHER"

 windowSignUp.radioButtonTeacher.Checked ← TRUE

 windowSignUp.radioButtonStudent.Checked ← FALSE

 ELSE // IF accountType = "STUDENT"

 windowSignUp.radioButtonTeacher.Checked ← FALSE

 windowSignUp.radioButtonStudent.Checked ← TRUE

 END IF

 windowSignUp.radioButtonTeacher.Enabled ← FALSE

 windowSignUp.radioButtonStudent.Enabled ← FALSE

 windowSignUp.textBoxForename.Text ← reader["Forename"]

 windowSignUp.textBoxSurname.Text ← reader["Surname"]

 windowSignUp.textBoxDateOfBirth.Text ← reader["DateOfBirth"]

 windowSignUp.textBoxEmail.Text ← reader["Email"]

 windowSignUp.textBoxSchool.Text ← reader["School"]

 END EVENT

 EVENT WindowSignUp_ButtonSignUp_Click

 IF WindowSignUp.ValidateSignUp(username) = TRUE

 sql ← <SQL 3.1_2 – Update account credentials>

 DATABASE.ExecuteCommand(sql)

 sql ← <SQL 3.1_3 – Update personal information>

 DATABASE.ExecuteCommand(sql)

 WindowSignUp.Close()

 END IF

 END EVENT

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 51

 EVENT WindowSignUp_Closed

 THIS.ParentWindow.Show()

 END EVENT

EVENT ButtonQuit_Click

 <Exit the application>

 END EVENT

END CLASS

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 52

TaskSettingControls class

This class is a collection of user controls, to be used in doing a subtask in the Task Setting Section.

(Reference: Module 2.2 – Task Setting Window) It contains:

User controls:

- A label labelTaskIndex showing the task number;

- A combobox comboBoxTask that enables users to select an appropriate task

- A button buttonRemoveTask for users to remove the task;

- A label labelStartingVertex indicating the users to enter a starting vertex, if required by the

content of the task;

- A combobox comboBoxStartingVertex that enables users to select a starting vertex

- A label labelFinishingVertex indicating the users to enter a finishing vertex, if required by

the content of the task;

- A combobox comboBoxFinishingVertex that enables users to select a finishing vertex

Variables:

A constant dictionary<string, string> tasks that sets a reference between the topic of the task and its

content.

Sample design:

Events:

- comboBoxTask : TextChanged: this will show/hide the starting/finishing vertex based on the

selected task by the users;

- buttonRemoveTask : Click: this will remove the task on this unit, as well as disposing the entire

user control.

Pseudo-code
PUBLIC CLASS TaskSettingControls

 DEFINE PUBLIC labelTaskIndex: LABEL

 DEFINE PUBLIC comboBoxTask: COMBOBOX

 DEFINE PUBLIC buttonRemoveTask: BUTTON

 DEFINE PUBLIC labelStartingVertex: LABEL

 DEFINE PUBLIC comboBoxStartingVertex: COMBOBOX

 DEFINE PUBLIC labelFinishingVertex: LABEL

 DEFINE PUBLIC comboBoxFinishingVertex: COMBOBOX

 DEFINE PUBLIC CONSTANT tasks: DICTIONARY<STRING, STRING>

 tasks ← { ("Prim", "Find the Minimum Spanning Tree using Prim's algorithm"),
("Kruskal", "Find the Minimum Spanning Tree using Kruskal's algorithm"),

("Dijkstra", "Find the Shortest Path using Dijkstra's algorithm"),

("Graph", "Draw the graph corresponding to the adjacency list/matrix"),

("Matrix", "Write the graph in adjacency matrix"),

("List", "Write the graph in adjacency list")}

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 53

 PUBLIC CONSTRUCTOR TaskSettingControls(INTEGER index)

 THIS.labelTaskIndex.Text ← "Task " + index

 END CONSTRUCTOR

 PUBLIC FUNCTION VOID EnableStartingVertex()

 THIS.labelStartingVertex.Enabled ← TRUE

 THIS.labelStartingVertex.Visible ← TRUE

 THIS.comboBoxStartingVertex.Enable ← TRUE

 THIS.comboBoxStartingVertex.Visible ← TRUE

 END FUNCTION

 PUBLIC FUNCTION VOID DisableStartingVertex()

 THIS.labelStartingVertex.Enabled ← FALSE

 THIS.labelStartingVertex.Visible ← FALSE

 THIS.comboBoxStartingVertex.Enable ← FALSE

 THIS.comboBoxStartingVertex.Visible ← FALSE

 END FUNCTION

 PUBLIC FUNCTION VOID EnableFinishingVertex()

 THIS.labelFinishingVertex.Enabled ← TRUE

 THIS.labelFinishingVertex.Visible ← TRUE

 THIS.comboBoxFinishingVertex.Enable ← TRUE

 THIS.comboBoxFinishingVertex.Visible ← TRUE

 END FUNCTION

 PUBLIC FUNCTION VOID DisableFinishingVertex()

 THIS.labelFinishingVertex.Enabled ← FALSE

 THIS.labelFinishingVertex.Visible ← FALSE

 THIS.comboBoxFinishingVertex.Enable ← FALSE

 THIS.comboBoxFinishingVertex.Visible ← FALSE

 END FUNCTION

 EVENT ComboBoxTask_TextChanged

 DEFINE newTaskText: STRING

 newTaskText ← comboBoxTask.Text

 IF newTaskText = tasks["Prim"]

 EnableStartingVertex()

 DisableFinishingVertex()

 ELSE IF newTaskText = tasks["Dijkstra"]

 EnableStartingVertex()

 EnableFinishingVertex()

 ELSE

 DisableStartingVertex()

 DisableFinishigVertex()

 END IF

 END EVENT

 EVENT buttonRemoveTask_Click

 THIS.Dispose()

 END EVENT

END CLASS

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 54

DoTaskControls class

This class is a collection of user controls, to be used in editing a subtask in the Do Task Section.

(Reference: Module 2.3.4 – Do Task) It contains:

User controls:

- A label labelTaskIndex showing the task number;

- A label labelTask showing the task content

- A textbox textBoxInputAnswer for users to enter the answer;

- A button buttonInputGraph for users to open a graph editing window and design a graph, if

required by the content of the task;

- A label labelCorrectWrong indicating if the user entered answer is correct or wrong, once the

task is marked;

- A label labelAnswer (hidden by default) showing the answer of the task;

- A button buttonShowAnswer for users to show the answer;

- A button buttonExplain for users to open step-by-step demonstration on the task.

Variables:

- A string answerValue keeping the numeric answer value;

- An adjacency matrix answerMatrix showing graphical answer;

- An adjacency matrix inputMatrix showing the user-designed graph.

Sample design:

Please refer to Module 2.3.4 – Do Questions in Appendix 1 – GUI implementation.

Events:

Relevant events will be constructed in the Task Setting Section. (Reference: Module 2.3.4 – Do Task)

Pseudo-code
PUBLIC CLASS DoTaskControls

 DEFINE PUBLIC labelTaskIndex: LABEL

 DEFINE PUBLIC labelTask: LABEL

 DEFINE PUBLIC textBoxInputAnswer: TEXTBOX

 DEFINE PUBLIC buttonInputGraph: BUTTON

 DEFINE PUBLIC labelCorrectWrong: LABEL

 DEFINE PUBLIC labelAnswer: LABEL

 DEFINE PUBLIC buttonShowAnswer: BUTTON

 DEFINE PUBLIC buttonExplain: BUTTON

 DEFINE PRIVATE answerValue: STRING

 DEFINE PRIVATE answerMatrix: AdjacencyMatrix

 DEFINE PRIVATE inputMatrix: AdjacencyMatrix

 PUBLIC CONSTRUCTOR DoTaskControls(INTEGER index)

 THIS.labelTaskIndex.Text ← "Task " + index

 END CONSTRUCTOR

 PUBLIC FUNCTION STRING GetAnswerValue()

 RETURN THIS.answerValue

 END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 55

 PUBLIC FUNCTION AdjacencyMatrix GetAnswerMatrix()

 RETURN THIS.answerMatrix

 END FUNCTION

 PUBLIC FUNCTION AdjacencyMatrix GetInputMatrix()

 RETURN THIS.inputMatrix

 END FUNCTION

 PUBLIC FUNCTION VOID SetAnswerValue(STRING newAnswerValue)

 THIS.answerValue ← newAnswerValue

 END FUNCTION

 PUBLIC FUNCTION VOID SetAnswerMatrix(AdjacencyMatrix newAnswerMatrix)

 THIS.answerMatrix ← newAnswerMatrix

 END FUNCTION

 PUBLIC FUNCTION VOID SetInputMatrix(AdjacencyMatrix newInputMatrix)

 THIS.inputMatirx ← newInputMatrix

 END FUNCTION

END CLASS

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 56

VertexTagControls class

This class is a collection of user controls, to be used in editing the properties of an adjacent edge of a

vertex in the Sketch Board. (Reference: Module 2.2.3 – Sketch Board) It contains:

User controls:

- A label labelFinishingVertex showing the destination vertex of the edge;

- A checkbox checkBoxContainsEdge for users to set if there is an edge between the current

vertex and the destination vertex;

- A label labelWeight indicating users to enter the weight, if the edge exists;

- A textbox textBoxWeight for users to enter the weight.

Sample design:

Events:

checkBoxContainsEdge : CheckChanged

Pseudo-code
PUBLIC CLASS VertexTagControls

 DEFINE PUBLIC labelFinishingVertex: LABEL

 DEFINE PUBLIC checkBoxContainsEdge: CHECKBOX

 DEFINE PUBLIC labelWeight: LABEL

 DEFINE PUBLIC textBoxWeight: TEXTBOX

 PUBLIC CONSTRUCTOR VertexTagControls(INTEGER vertex)

 THIS.labelFinishingVertex.Text ← "To Vertex " + (vertex + 'A')

 END CONSTRUCTOR

 EVENT CheckBoxContainsEdge_CheckChanged

 IF checkBoxContainsEdge.Checked = TRUE

 THIS.labelWeight.Enabled ← TRUE

 THIS.textBoxWeight.Enabled ← TRUE

 ELSE

 THIS.labelWeight.Enabled ← FALSE

 THIS.textBoxWeight.Enabled ← FALSE

 THIS.textBoxWeight.Text ← ""

 END IF

 END EVENT

END CLASS

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 57

Graph class

This abstract class represents a graph in general. It contains:

Variables:

- Integer constant SIZE representing the maximum limit number of vertices. In this system, the

maximum limit is 26;

- Boolean array vertexExisting indicating whether each of the 26 vertices is contained in the

graph.

Graph operation functions:

- Get the name of the graph, either in string format, or its numeric index;

- Get the number of vertices that are contained in the graph;

- Get/set if a vertex is contained in the graph;

- Get/set the weight of an edge between two vertices;

- Check if there is an edge between two vertices;

- Remove an edge between two vertices;

- Remove a vertex along with all of its adjacent edges from the graph;

- Clear the graph;

- Check if the graph is undirected.

Graph algorithms:

- Prim's algorithm, returning either the total weight of the Minimum Spanning Tree of the graph (the

graph must be undirected), or the whole Minimum Spanning Tree;

- Kruskal's algorithm, returning either the total weight of the Minimum Spanning Tree of the graph

(the graph must be undirected), or the whole Minimum Spanning Tree;

- Dijkstra's algorithm, returning either the shortest distance between two vertices of the graph, or the

whole shortest path between the two vertices;

- All the relevant functions or algorithms that contribute to the above three algorithms, such as

Quicksort and Union-Find data structure.

Pseudo-code
PUBLIC ABSTRACT CLASS Graph

DEFINE PRIVATE CONSTANT SIZE ← 26

DEFINE PRIVATE vertexExisting: BOOLEAN[SIZE]

PUBLIC CONSTRUCTOR Graph()

 FOREACH BOOLEAN status IN vertexExisting

 status ← FALSE

 END FOR

END CONSTRUCTOR

PUBLIC FUNCTION INTEGER GetSize()

 RETURN THIS.SIZE

END FUNCTION

PUBLIC FUNCTION BOOLEAN IsVertexExisting(INTEGER vertex)

 RETURN THIS.vertexExisting[vertex]

END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 58

PUBLIC FUNCTION STRING GetVertexName(INTEGER vertexIndex)

 RETURN "vertex" + (vertexIndex + 'A')

END FUNCTION

PUBLIC FUNCTION INTGER GetVertexIndex(STRING vertexName)

 RETURN vertexName.Trim("vertex") – 'A'

END FUNCTION

PUBLIC FUNCTION INTEGER Count()

 DEFINE count: INTEGER

 count ← 0

 FOREACH BOOLEAN status IN THIS.vertexExisting

 IF status = TRUE

 count ← count + 1

 END IF

 END FOR

 RETURN count

END FUNCTION

PUBLIC ABSTRACT FUNCTION REAL GetEdge(INTEGER vStart, INTEGER vFinish)

PUBLIC FUNCTION BOOLEAN ContainsEdge(INTEGER vStart, INTEGER vFinish)

 RETURN GetEdge(vStart, vFinish) ≠ 0

END FUNCTION

PUBLIC ABSTRACT FUNCTION VOID SetEdge(INTEGER vStart, INTEGER vFinish,

REAL weight, BOOLEAN isDirected)

PUBLIC FUNCTION VOID SetEdge(INTEGER vStart, INTEGER vFinish, BOOLEAN isDirected)

 SetEdge(vStart, vFinish, 1, isDirected)

END FUNCTION

PUBLIC FUNCTION VOID SetDirectedEdge(INTEGER vStart, INTEGER vFinish, REAL weight)

 SetEdge(vStart, vFinish, weight, TRUE)

END FUNCTION

PUBLIC FUNCTION VOID SetDirectedEdge(INTEGER vStart, INTEGER vFinish)

 SetEdge(vStart, vFinish, 1, TRUE)

END FUNCTION

PUBLIC FUNCTION VOID SetUndirectedEdge(INTEGER vStart, INTEGER vFinish, REAL weight)

 SetEdge(vStart, vFinish, weight, FALSE)

END FUNCTION

PUBLIC FUNCTION VOID SetUndirectedEdge(INTEGER vStart, INTEGER vFinish)

 SetEdge(vStart, vFinish, 1, FALSE)

END FUNCTION

PUBLIC ABSTRACT FUNCTION VOID RemoveEdge(INTEGER vStart, INTEGER vFinish,

BOOLEAN isDirected)

PUBLIC FUNCTION VOID RemoveDirectedEdge(INTEGER vStart, INTEGER vFinish)

 RemoveEdge(vStart, vFinish, TRUE)

END FUNCION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 59

PUBLIC FUNCTION VOID RemoveUndirectedEdge(INTEGER vStart, INTEGER vFinish)

 RemoveEdge(vStart, vFinish, FALSE)

END FUNCION

PUBLIC FUNCTION VOID SetVertexExistance(INTEGER vertex, BOOLEAN status)

 THIS.vertexExisting[vertex] ← status

END FUNCTION

PUBLIC FUNCTION VOID EnableVertex(INTEGER vertex)

 SetVertexExistance(vertex, TRUE)

END FUNCTION

PUBLIC FUNCTION VOID DisableVertex(INTEGER vertex)

 SetVertexExistance(vertex, FALSE)

END FUNCTION

PUBLIC FUNCTION VOID RemoveVertex(INTEGER vertex)

 FOR INTEGER v ← 0 TO GetSize() - 1 DO

 RemoveUndirectedEdge(v, vertex)

 END FOR

 DisableVertex(vertex)

END FUNCTION

PUBLIC FUNCTION VOID Clear()

 FOR INTEGER v ← 0 TO GetSize() - 1 DO

 RemoveVertex(v)

 END FOR

END FUNCTION

PUBLIC FUNCTION BOOLEAN CheckUndirectedGraph()

 FOR INTEGER v1 ← 0 TO GetSize() – 2 DO

 FOR INTEGER v2 ← v1 + 1 TO GetSize() - 1 DO

 IF GetEdge(v1, v2) ≠ GetEdge(v2, v1)

 RETURN FALSE

 END IF

 END FOR

 END FOR

 RETURN TRUE

END FUNCTION

PUBLIC FUNCTION REAL Prim(INTEGER vStart)

 IF CheckUndirectedGraph = FALSE

 <Output error message>

 ELSE

 DEFINE visitedVertices, remainingVertices: LIST<INTEGER>

 DEFINE weightMST: DOUBLE

 weightMST ← 0

 FOR INTEGER i ← 0 TO GetSize() - 1 DO

 IF IsVertexExisting(i) = TRUE

 remainingVertices.Add(i)

 END IF

 END FOR

 WHILE remainingVertices.Count ≠ 0 DO

 DEFINE min: REAL

DEFINE newVertex: INTEGER

 min ← +∞

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 60

 FOREACH INTEGER i IN visitedVertices

 FOREACH INTEGER j IN remainingVertices

 IF ContainsEdge(i, j) = TRUE AND GetEdge(i, j) < min

 min ← GetEdge(i, j)

 newVertex ← j

 END IF

 END FOR

 END FOR

 visitedVertices.Add(newVertex)

 remainingVertices.Remove(newVertex)

 weightMST += min

 END WHILE

 RETURN weightMST

 END IF

END FUNCTION

PUBLIC FUNCTION Graph Prim_GetTree(INTEGER vStart)

IF CheckUndirectedGraph = FALSE

 <Output error message>

 ELSE

 DEFINE visitedVertices, remainingVertices: LIST<INTEGER>

 DEFINE outputMST: Graph

 FOR INTEGER i ← 0 TO GetSize() - 1 DO

 IF IsVertexExisting(i) = TRUE

 remainingVertices.Add(i)

 END IF

 END FOR

 WHILE remainingVertices.Count ≠ 0 DO

 DEFINE min: REAL

DEFINE newVStart, newVFinish: INTEGER

 min ← +∞

 FOREACH INTEGER i IN visitedVertices

 FOREACH INTEGER j IN remainingVertices

 IF ContainsEdge(i, j) = TRUE AND GetEdge(i, j) < min

 min ← GetEdge(i, j)

 newVStart ← i

 newVFinish ← j

 END IF

 END FOR

 END FOR

 visitedVertices.Add(newVertex)

 remainingVertices.Remove(newVertex)

 outputMST.SetUndirectedEdge(newVStart, newVFinish, min)

 END WHILE

 RETURN outputMST

 END IF

END FUNCTION

DEFINE PRIVATE STRUCT Edge

 vStart, vFinish: INTEGER

 weight: REAL

END STRUCT

DEFINE PRIVATE edges: LIST<Edge>

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 61

PRIVATE FUNCTION VOID InitialiseEdges()

 FOR INTEGER i ← 0 TO GetSize() – 2 DO

 FOR INTEGER j ← i + 1 TO GetSize() - 1 DO

 IF ContainsEdge(i, j) = TRUE

 edges.Add(new Edge(vStart ← i, vFinish ← j, weight ← GetEdge(i, j)))

 END IF

 END FOR

 END FOR

END FUNCTION

DEFINE PRIVATE STRUCT UnionFind

 vertex, leader, prev, head, tail, count: INTEGER

END STRUCT

DEFINE PRIVATE unionFindVertices: LIST<UnionFind>

PRIVATE FUNCTION VOID InitialiseUnionFind()

 FOR INTEGER v ← 0 TO GetSize() - 1 DO

 IF IsVertexExisting(v) = TRUE

 unionFindVertices.Add(new UnionFind(vertex ← v, leader ← v,

prev ← -1, head ← v,

tail ← v, count ← 1)

 END IF

 END FOR

END FUNCTION

PRIVATE FUNCTION UnionFind Find(INTEGER vertex)

 FOREACH UnionFind v IN unionFindVertices

 IF v.vertex = vertex

 RETURN v

 END IF

 END FOR

 RETURN <Not found>

END FUNCTION

PRIVATE FUNCTION VOID Update(INTEGER setX, INTEGER setY)

 DEFINE index: INTEGER

 index ← unionFindVertices[setX].tail

 LOOP

 unionFindVertices[index].leader ← setY

 index ← unionFindVertices[index].prev

 UNTIL index = -1

 unionFindVertices[unionFindVertices[setY].head].Prev ←

unionFindVertices[setX].tail

 unionFindVertices[setY].head ← unionFindVertices[setX].head

 unionFindVertices[setY].count ← unionFindVertices[setY].count

+ unionFindVertices[setX].count

END FUNCTION

PRIVATE FUNCTION VOID Union(INTEGER setX, INTEGER setY)

 IF unionFindVertices[setX].count < unionFindVertices[setY].count

 Update(setX, setY)

 ELSE

 Update(setY, setX)

 END IF

END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 62

PUBLIC FUNCTION REAL Kruskal()

 IF CheckUndirectedGraph() = FALSE

 <Output error message>

 ELSE

 DEFINE weightMST: DOUBLE

 DEFINE count: INT

 weightMST ← 0

 count ← 0

 InitialiseEdges()

 InitialiseUnionFind()

 <Sort edges in ascending order>

 WHILE count < Count() – 1 DO

 IF Find(edges[0].vStart).leader ≠ Find(edges[0].vFinish).leader

 count ← count + 1

 weightMST ← weightMST + edges[0].weight

 Union(Find(edges[0].vStart).leader, Find(edges[0].vFinish).leader)

 END IF

 edges.Remove(edges[0])

 END WHILE

 RETURN weightMST

 END IF

END FUNCTION

PUBLIC FUNCTION Graph Kruskal_GetTree()

 IF CheckUndirectedGraph() = FALSE

 <Output error message>

 ELSE

 DEFINE outputMST: Graph

 DEFINE count: INT

 InitialiseEdges()

 InitialiseUnionFind()

 <Sort edges in ascending order>

 WHILE count < Count() – 1 DO

 IF Find(edges[0].vStart).leader ≠ Find(edges[0].vFinish).leader

 count ← count + 1

 outputMST.SetUndirectedEdge(edges[0].vStart, edges[0].vFinish)

 Union(Find(edges[0].vStart).leader, Find(edges[0].vFinish).leader)

 END IF

 edges.Remove(edges[0])

 END WHILE

 RETURN outputMST

 END IF

END FUNCTION

DEFINE PRIVATE STRUCT DijkstraVertex

 distance: REAL

 prev: INTEGER

END STRUCT

DEFINE PRIVATE dijkstraMap: DijkstraVertex[SIZE]

PRIVATE FUNCTION VOID InitialiseSingleSource(INTEGER vStart)

 FOREACH DijkstraVertex v IN dijkstraMap

 v.distance ← +∞, v.prev ← -1

 END FOR

 dijkstraMap[vStart].distance ← 0

END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 63

 PRIVATE FUNCTION VOID RelaxEdge(INTEGER vStart, INTEGER vFinish)

 IF ContainsEdge(vStart, vFinish)

 AND dijkstraMap[vFinish].distance > dijkstraMap[vStart].distance

+ GetEdge(vStart, vFinish)

 dijkstraMap[vFinish].distance ← dijkstraMap[vStart].distance

+ GetEdge(vStart, vFinish)

 dijkstraMap[vFinish].prev ← vStart

 END IF

 END FUNCTION

 PUBLIC FUNCTION REAL Dijkstra(INTEGER vStart, INTEGER vFinish)

 InitialiseSingleSource(vStart)

 DEFINE permanentVertices, temporaryVertices: LIST<INTEGER>

 FOR INTEGER i ← 0 TO GetSize() – 1 DO

 temporaryVertices.Add(i)

 END FOR

 WHILE temporaryVertices.Count ≠ 0 DO

 DEFINE minTemporaryVertex: INTEGER

 DEFINE min: REAL

 min ← +∞

 FOREACH INTEGER i IN temporaryVertices

 IF dijkstraMap[i].distance < min

 minTemporaryVertex ← i

 min ← dijkstraMap[i].distance

 END IF

 END FOR

 temporaryVertices.Remove(minTemporaryVertex)

 permanentVertices.Add(minTemporaryVertex)

 FOR INTEGER i ← 0 TO GetSize() – 1 DO

 RelaxEdge(minTemporaryVertex, i)

 END FOR

 END WHILE

 RETURN dijkstraMap[vFinish].distance

 END FUNCTION

 PUBLIC FUNCTION LIST<INTEGER> Dijkstra_GetShortestPath(INTEGER vStart,

INTEGER vFinish)

 InitialiseSingleSource(vStart)

 DEFINE permanentVertices: LIST<INTEGER>

DEFINE temporaryVertices: LIST<INTEGER>

 DEFINE shortestPath: LIST<INTEGER>

 FOR INTEGER i ← 0 TO GetSize() – 1 DO

 temporaryVertices.Add(i)

 END FOR

 WHILE temporaryVertices.Count ≠ 0 DO

 DEFINE minTemporaryVertex: INTEGER

 DEFINE min: REAL

 min ← +∞

 FOREACH INTEGER i IN temporaryVertices

 IF dijkstraMap[i].distance < min

 minTemporaryVertex ← i

 min ← dijkstraMap[i].distance

 END IF

 END FOR

 temporaryVertices.Remove(minTemporaryVertex)

 permanentVertices.Add(minTemporaryVertex)

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 64

 FOR INTEGER i ← 0 TO GetSize() – 1 DO

 RelaxEdge(minTemporaryVertex, i)

 END FOR

 END WHILE

 IF dijkstraMap[vFinish].distance ← +∞

 RETURN <No path between vStart and vFinish>

 ELSE

 DEFINE i: INTEGER

 i ← vFinish

 shortestPath.Add(i)

 WHILE dijkstraMap[i].prev ≠ -1 DO

 shortestPath.Add(dijkstraMap[i].prev)

 i ← dijkstraMap[i].prev

 END WHILE

 shortestPath.ReverseOrder()

 RETURN shortestPath

 END IF

 END FUNCTION

END CLASS

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 65

AdjacencyMatrix class

This class, inheriting Graph class, represents an adjacency matrix. It contains:

Variables:

- Real 2-dimensional array map representing the adjacency matrix.

Overriden graph operation functions:

- GetEdge(INTEGER vStart, INTEGER vFinish)

- SetEdge(INTEGER vStart, INTEGER vFinish, REAL weight, BOOLEAN isDirected)

- RemoveEdge(INTEGER vStart, INTEGER vFinish, BOOLEAN isDirected)

Self-implemented graph operation functions:

- CompareTo(AdjacencyMatrix matrix) : compares with an adjacency matrix, and returns a

list of integer containing the vertices that are different. (Returns NULL if there is no difference.)

Pseudo-code
PUBLIC CLASS AdjacencyMatrix INHERITS Graph

DEFINE PRIVATE map: REAL[GetSize(), GetSize()]

PUBLIC CONSTRUCTOR AdjacencyMatrix() INHERITS BASE()

 FOREACH REAL element IN map

 status ← 0

 END FOR

END CONSTRUCTOR

PUBLIC OVERRIDE FUNCTION REAL GetEdge(INTEGER vStart, INTEGER vFinish)

 RETURN THIS.map[vStart, vFinish]

END FUNCTION

PUBLIC FUNCTION LIST<INTEGER> CompareTo(AdjacencyMatrix matrix)

 DEFINE differentVertices: LIST<INTEGER>

 IF matrix = NULL

 <Add all existing vertices in THIS object to differentVertices>

 RETURN differentVertices

 ELSE

 FOR INTEGER row ← 0 TO GetSize() – 1 DO

 FOR INTEGER col ← 0 TO GetSize() – 1 DO

 IF THIS.GetEdge(row, col) ≠ matrix.GetEdge(row, col)

 differentVertices.Add(row)

 END IF

 END FOR

 END FOR

RETURN differentVertices

 END IF

END FUNCTION

PUBLIC OVERRIDE FUNCTION VOID SetEdge(INTEGER vStart, INTEGER vFinish,

REAL weight, BOOLEAN isDirected)

 IF weight ≠ 0

 THIS.EnableVertex(vStart)

 THIS.EnableVertex(vFinish)

 THIS.map[vStart, vFinish] ← weight

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 66

 IF isDirected = FALSE

 This.map[vFinish, vStart] ← weight

 END IF

 END IF

END FUNCTION

PUBLIC OVERRIDE FUNCTION VOID RemoveEdge(INTEGER vStart, INTEGER vFinish,

BOOLEAN isDirected)

 THIS.map[vStart, vFinish] ← 0

 IF isDirected = FALSE

 THIS.map[vFinish, vStart] ← 0

 END IF

END FUNCTION

END CLASS

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 67

AdjacencyList class

This class, inheriting Graph class, represents an adjacency list. It contains:

Variables:

- Struct AdjacentEdge representing a directed edge. It contains the following properties:

- Integer vertex representing the destination vertex;

- Real weight representing the weight of the directed edge.

- Array of list of AdjacentEdge, named list, representing the adjacency list.

Overriden graph operation functions:

- GetEdge(INTEGER vStart, INTEGER vFinish)

- SetEdge(INTEGER vStart, INTEGER vFinish, REAL weight, BOOLEAN isDirected)

- RemoveEdge(INTEGER vStart, INTEGER vFinish, BOOLEAN isDirected)

Self-implemented graph operation functions:

- CompareTo(AdjacencyList list) : compares with an adjacency list, and returns a list of

integer containing the vertices that are different. (Returns NULL if there is no difference.)

Pseudo-code
PUBLIC CLASS AdjacencyMatrix INHERITS Graph

DEFINE PRIVATE STRUCT AdjacentEdge

 vertex: INTEGER

 weight: REAL

END STRUCT

DEFINE PRIVATE list: LIST<AdjacentEdge>[GetSize()]

PUBLIC CONSTRUCTOR AdjacencyMatrix() INHERITS BASE() // No other operation needed

PUBLIC OVERRIDE FUNCTION REAL GetEdge(INTEGER vStart, INTEGER vFinish)

 FOREACH AdjacentEdge edge IN list[vStart]

 IF edge.vertex = vFinish

 RETURN edge.weight

 END IF

 END FOR

END FUNCTION

PUBLIC FUNCTION LIST<INTEGER> CompareTo(AdjacencyList list)

 DEFINE differentVertices: LIST<INTEGER>

 IF list = NULL

 <Add all existing vertices in THIS object to differentVertices>

 RETURN differentVertices

 ELSE

 FOR INTEGER v ← 0 TO GetSize() – 1 DO

 FOREACH AdjacentEdge edge IN THIS.list[v]

 IF NOT list.list[v].Contains(edge)

 differentVertices.Add(v)

 END IF

 END FOR

 END FOR

 RETURN differentVertices

END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 68

PUBLIC OVERRIDE FUNCTION VOID SetEdge(INTEGER vStart, INTEGER vFinish,

REAL weight, BOOLEAN isDirected)

IF weight ≠ 0

 DEFINE edgeToRemove: AdjacentEdge

 FOREACH AdjacentEdge edge IN THIS.list[vStart]

 IF edge.vertex = vFinish

 edgeToRemove ← edge

 END IF

 END FOR

 THIS.list[vStart].Remove(edgeToRemove)

 THIS.list[vStart].Add(NEW AdjacentEdge(vertex ← vFinish, weight ← weight)

 IF isDirected = FALSE

 FOREACH AdjacentEdge edge IN THIS.list[vFinish]

 IF edge.vertex = vStart

 edgeToRemove ← edge

 END IF

 END FOR

 THIS.list[vFinish].Remove(edgeToRemove)

 THIS.list[vFinish].Add(NEW AdjacentEdge(vertex ← vStart,

weight ← weight)

 END IF

END IF

 END FUNCTION

PUBLIC OVERRIDE FUNCTION VOID RemoveEdge(INTEGER vStart, INTEGER vFinish,

BOOLEAN isDirected)

 DEFINE edgeToRemove: AdjacentEdge

 FOREACH AdjacentEdge edge IN THIS.list[vStart]

 IF edge.vertex = vFinish

 edgeToRemove ← edge

 END IF

 END FOR

 THIS.list[vStart].Remove(edgeToRemove)

 IF isDirected = FALSE

 FOREACH AdjacentEdge edge IN THIS.list[vFinish]

 IF edge.vertex = vStart

 edgeToRemove ← edge

 END IF

 END FOR

 THIS.list[vFinish].Remove(edgeToRemove)

 END IF

 END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 69

MinimumSpanningTreeExample class

This class represents an example graph to be used in the Step-by-Step Demonstration Section.

(Reference: Module 2.1.1/2.2 Step-by-Step Demonstrations) It contains:

Variables:

- A List of Vertex control, named vertices;

- An adjacency matrix mapMatrix representing the example graph;

- A panel panel where the example graph is shown and all the visual operations takes place;

- A 26 × 26 array of labels labelWeights in order to show the weights of the edge on the panel.

Functions:

- Create a vertex with specific name and its location on the panel;

- Create an undirected edge between two specific vertices;

- Place the correct weight labels into the correct positions;

- Highlight/unhighlight the edges and the labels when needed.

Pseudo-code
PUBLIC CLASS MinimumSpanningTreeExample

DEFINE PUBLIC vertices: LIST<Vertex>

DEFINE PUBLIC mapMatrix: AdjacencyMatrix

DEFINE PUBLIC panel: PANEL

DEFINE PUBLIC labelWeights: LABEL[26, 26]

PUBLIC CONSTRUCTOR MinimumSpanningTreeExample(PANEL panel)

 THIS.panel ← panel

 FOREACH LABEL label IN labelWeights

 label.Enabled ← FALSE

 label.Visible ← FALSE

 END FOR

END CONSTRUCTOR

PUBLIC FUNCTION VOID CreateVertex(STRING name, INTEGER x, INTEGER y)

 DEFINE v: Vertex

 v ← new Vertex(name, NEW POINT(x, y))

 v.SetSelectable(FALSE)

 v.SetDraggable(FALSE)

 THIS.vertices.Add(v)

 THIS.panel.Add(v)

 THIS.mapMatrix.EnableVertex(v.GetNumberIndex())

END FUNCTION

PUBLIC FUNCTION VOID CreateEdge(Vertex v1, Vertex v2, REAL weight)

 v1.SetEdge(v2, weight)

 v2.SetEdge(v1, weight)

 THIS.mapMatrix.SetUndirectedEdge(v1.GetNumberIndex(),

v2.GetNumberIndex(), weight)

 THIS.panel.<Draw edge between v1 and v2>

END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 70

PUBLIC FUNCTION VOID CreateEdge(INTEGER v1, INTEGER v2, REAL weight)

 FOR INTEGER i ← 0 TO THIS.vertices.Count – 1 DO

 FOR INTEGER j ← 0 TO THIS.vertices.Count – 1 DO

 IF vertices[i].GetNumberIndex() = v1

AND vertices[j].GetNumberIndex() = v2

 vertives[i].SetEdge(vertices[j], weight)

 vertices[j].SetEdge(vertices[i], weight)

 END IF

 END FOR

END FOR

THIS.mapMatrix.SetUndirectedEdge(v1, v2, weight)

THIS.panel.<Draw edge between v1 and v2>

END FUNCTION

PUBLIC FUNCTION VOID DrawLabelWeights()

 FOREACH Vertex v1 IN vertices

 FOREACH Vertex v2 IN v1.GetEdges

 DEFINE vStart, vFinish: INTEGER

 vStart ← v1.GetNumberIndex()

 vFinish ← v2.GetNumberIndex()

 IF vFinish > vStart

 labelWeights[vStart, vFinish].Enabled ← TRUE

 labelWeights[vStart, vFinish].Visible ← TRUE

 DEFINE midpoint: POINT

 midpoint ← NEW POINT(

(v1.GetCentreLocation().X + v2.GetCentreLocation().X) / 2,

(v1.GetCentreLocation().Y + v2.GetCentreLocation().Y) / 2);

 labelWeights[vStart, vFinish].Location ← midpoint

 END IF

 END FOR

 END FOR

END FUNCTION

PUBLIC FUNCTION EdgeFocusOn(Vertex v1, Vertex v2)

 <Highlight labelWeights[v1.GetNumberIndex(), v2.GetNumberIndex()]>

 <Highlight edge between v1 and v2>

END FUNCTION

PUBLIC FUNCTION EdgeFocusOn(INTEGER v1, INTEGER v2)

 <Highlight labelWeights[v1, v2]>

 <Highlight edge between v1 and v2>

END FUNCTION

PUBLIC FUNCTION EdgeFocusOff(Vertex v1, Vertex v2)

 <Do not highlight labelWeights[v1.GetNumberIndex(),v2.GetNumberIndex()]>

 <Do not highlight edge between v1 and v2>

END FUNCTION

PUBLIC FUNCTION EdgeFocusOff(INTEGER v1, INTEGER v2)

 <Do not highlight labelWeights[v1, v2]>

 <Do not highlight edge between v1 and v2>

END FUNCTION

END CLASS

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 71

ShortestPathExample class

This class represents an example graph to be used in the Step-by-Step Demonstration Section.

(Reference: Module 2.1.3.2 Step-by-Step Demonstrations) It contains:

Variables:

- A List of DijkstraVertexLabel control, named vertices;

- An adjacency matrix mapMatrix representing the example graph;

- A panel panel where the example graph is shown and all the visual operations takes place;

- A 26 × 26 array of labels labelWeights in order to show the weights of the edge on the panel.

Functions:

- Create a vertex with specific name and its location on the panel;

- Create an edge between two specific vertices;

- Place the correct weight labels into the correct positions;

- Highlight/unhighlight the edges and the labels when needed.

Pseudo-code
PUBLIC CLASS ShortestPathExample

DEFINE PUBLIC vertices: LIST<DijkstraVertexLabel>

DEFINE PUBLIC mapMatrix: AdjacencyMatrix

DEFINE PUBLIC panel: PANEL

DEFINE PUBLIC labelWeights: LABEL[26, 26]

PUBLIC CONSTRUCTOR ShortestPathExample(PANEL panel)

 THIS.panel ← panel

 FOREACH LABEL label IN labelWeights

 label.Enabled ← FALSE

 label.Visible ← FALSE

 END FOR

END CONSTRUCTOR

PUBLIC FUNCTION VOID CreateVertex(CHAR name, INTEGER x, INTEGER y)

 DEFINE v: DijkstraVertexLabel

 v ← new DijkstraVertexLabel(name, NEW POINT(x, y))

 v.SetReadOnly(TRUE)

 THIS.vertices.Add(v)

 THIS.panel.Add(v)

 THIS.mapMatrix.EnableVertex(v.GetNumberIndex())

END FUNCTION

PUBLIC FUNCTION VOID CreateUndirectedEdge(INTEGER v1, INTEGER v2, REAL weight)

 THIS.mapMatrix.SetUndirectedEdge(v1, v2, weight)

 THIS.panel.<Draw edge between v1 and v2>

END FUNCTION

PUBLIC FUNCTION VOID CreateDirectedEdge(INTEGER v1, INTEGER v2, REAL weight)

 THIS.mapMatrix.SetDirectedEdge(v1, v2, weight)

 THIS.panel.<Draw edge between v1 and v2>

END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 72

PUBLIC FUNCTION VOID DrawLabelWeights()

 FOREACH DijkstraVertexLabel v1 IN vertices

 FOREACH DijkstraVertexLabel v2 IN v1.GetEdges

 DEFINE vStart, vFinish: INTEGER

 vStart ← v1.GetNumberIndex()

 vFinish ← v2.GetNumberIndex()

 labelWeights[vStart, vFinish].Enabled ← TRUE

 labelWeights[vStart, vFinish].Visible ← TRUE

 DEFINE point: POINT

 point ← <appropriate location for the label>

 labelWeights[vStart, vFinish].Location ← point

 END FOR

 END FOR

END FUNCTION

PUBLIC FUNCTION EdgeFocusOn(Vertex v1, Vertex v2)

 <Highlight labelWeights[v1.GetNumberIndex(), v2.GetNumberIndex()]>

 <Highlight edge between v1 and v2>

END FUNCTION

PUBLIC FUNCTION EdgeFocusOn(INTEGER v1, INTEGER v2)

 <Highlight labelWeights[v1, v2]>

 <Highlight edge between v1 and v2>

END FUNCTION

PUBLIC FUNCTION EdgeFocusOff(Vertex v1, Vertex v2)

 <Do not highlight labelWeights[v1.GetNumberIndex(),v2.GetNumberIndex()]>

 <Do not highlight edge between v1 and v2>

END FUNCTION

PUBLIC FUNCTION EdgeFocusOff(INTEGER v1, INTEGER v2)

 <Do not highlight labelWeights[v1, v2]>

 <Do not highlight edge between v1 and v2>

END FUNCTION

END CLASS

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 73

Prim's minimum spanning tree algorithm

Prim's algorithm is used to find the Minimum Spanning Tree for a weighted undirected graph.

Algorithm description:[4]

START with an arbitrary vertex of G;

STEP 1: Add an edge of minimum weight joining a vertex already included to a vertex not already

included;

STEP 2: If a spanning tree is obtained STOP; otherwise return to STEP 1;

Algorithmic pseudo-code[5]

 For a graph G ← (V, E) and the root vertex r, during execution of the algorithm, maintain a min-priority

queue Q of all vertices that are not in the Minimum Spanning Tree. Fore each vertex v there are two

attributes: the attribute v.key is the minimum weight of any edge connecting v to a vertex in the tree (v.key

← ∞ if there is no such edge); the attribute v.parent names the parent of v in the tree. The min-priority queue

Q is based on the key attribute. The Minimum Spanning Tree MST for G is thus computed by the following

processing:

 PRIM(G, r)

 FOREACH vertex u ∈ G.V

 u.key ← ∞

 u.parent ← NULL

 r.key ← 0

 Q ← G.V

 MST ← ∅

 WHILE Q ≠ ∅

 u ← EXTRACT-MIN(Q)

 MST ← MST ∪ {(u, u.parent)}

 FOREACH vertex v ∈ G.Adj[u]

 IF v ∈ Q AND weight(u, v) < v.key

 v.parent ← u

 v.key ← weight(u, v)

 OUTPUT MST

Programming implementation:

Please refer to the Graph class.

Time complexity:

 The WHILE Q ≠ ∅ loop needs to be computed 𝑂(𝑉) times;

This project implements Prim's algorithm using linear searching of weights on an adjacency matrix or

an adjacency list, so EXTRACT-MIN(Q) takes 𝑂(𝑉) running time.

Therefore it has an 𝑂(𝑉2) time complexity.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 74

Kruskal's minimum spanning tree algorithm

Kruskal's algorithm is used to find the Minimum Spanning Tree for a weighted undirected graph.

Algorithm description:[4]

START with all the vertices of G, but no edges; list the edges in increasing order of weight.

STEP 1 Add an edge of G of minimum weight in such a way that no cycles are created.

STEP 2 If a spanning tree is obtained STOP; otherwise return to STEP 1.

Algorithmic pseudo-code[5]

 For a graph G = (V, E), Kruskal's algorithm uses a Union-Find data structure to maintain several Union-

Find sets of elements. Each set contains the vertices in one tree of the current forest. The operation FIND-

SET(u) returns a representative element from the set that contains u. Thus, we can determine whether two

vertices u and v belong to the same tree by testing whether FIND-SET(u) equals FIND-SET(v). To combine

trees, Kruskal's algorithm calls the UNION procedure.

 KRUSKAL(G)

 MST ← ∅

 FOREACH vertex v ∈ G.V

 MAKE-SET(v)

 sort the edges of G.E into nondecreasing order by weight w

 FOREACH edge (u, v) ∈ G.E, taken in nondecreasing order by weight

 IF FIND-SET(u) ≠ FIND-SET(v)

 MST ← MST ∪ {(u, v)}

 UNION(u, v)

 OUTPUT MST

Programming implementation:

Please refer to the Graph class.

Time complexity:

 The time taken to sort the edges is 𝑂(𝐸 log 𝐸). Since 𝐸 ≤ 𝑉2, we have 𝑂(𝐸 log 𝐸) = 𝑂(𝐸 log 𝑉2) =

 𝑂(2𝐸 log 𝑉) = 𝑂(𝐸 log 𝑉);

 This project implements Kruskal's algorithm using the union-by-rank and path-compression heuristics

for the implementation of the Union-Find data structure, therefore the FOREACH loop performs 𝑂(𝐸) FIND-

SET and UNION operations in the Union-Find forest.

Overall it has an 𝑂(𝐸 log 𝑉) time complexity.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 75

Dijkstra's shortest path algorithm

Dijkstra's algorithm is used to find the shortest path between to vertices in a graph without negative-weight

edge cycles.

Algorithm description:[4]

START with a graph G. At each vertex draw a box, the lower area for temporary labels, the upper left

hand area for the order of becoming permanent and the upper right hand area for the

permanent label.

STEP 1 Make the given start vertex permanent by giving it permanent label 0 and order label 1.

STEP 2 For each vertex that is not permanent and is connected by an arc to the vertex that has just

been made permanent (with permanent label = P), add the arc weight to P. If this is smaller

than the best temporary label at the vertex, write this value as the new best temporary label.

STEP 3 Choose the vertex that is not yet permanent which has the smallest best temporary label. If

there is more than one such vertex, choose any one of them. Make this vertex permanent and

assign it the next order label.

STEP 4 If every vertex is now permanent, or if the target vertex is permanent, use ‘trace back’ to find

the routes or route, then STOP; otherwise return to STEP 2

Algorithmic pseudo-code[5]

 For each vertex v ∈ G.V, we maintain an attribute v.distance, which is an upper bound on the weight

of a shortest path from sourse vertex s to v, and an attribute v.prev, which is the predecessor of v that is

either another vertex or NULL. We initialise v.distance by the following procedure:

 INITIALISE-SINGLE-SOURCE(G, s)

 FOREACH vertex v ∈ G.V

 v.distance ← ∞

 v.prev ← NULL

 s.distance ← 0

 The process of relaxing an edge (u, v) consists of testing whether we can improve the shortest path

to (u, v) found so far by going through u and, if so, updating v.distance and v.prev. The following procedure

performs a relaxation step on edge (u, v)

 RELAX(u, v)

 IF v.distance > u.distance + weight(u, v)

 v.distance ← u.distance + weight(u, v)

 v.prev ← u

 Dijkstra’s algorithm maintains a set S of vertices whose final shortest-path weights from the source s

have already been determined. The algorithm repeatedly selects the vertex u ∈ V – S with the minimum

distance attribute, adds u to S, and relaxes all edges leaving u. In the following implementation, we use a

min-priority queue Q of vertices, keyed by their distance attribute:

 DIJKSTRA(G, s)

 INITIALISE-SINGLE-SOURCE(G, s)

 S ← ∅

 Q ← G.V

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 76

 WHILE Q ≠ ∅

 u ← EXTRACT-MIN(Q)

 S ← S ∪ {u}

 FOREACH vertex v ∈ G.Adj[u]

 RELAX(u, v)

Programming implementation:

Please refer to the Graph class.

Time complexity:

 The processing of INITIALISE-SINGLE-SOURCE(G, s) takes 𝑂(𝑉) running time;

 The WHILE loop iterates exactly |𝑉| times, with the following processing:

- This project implements Dijkstra's algorithm using linear searching of weights on an adjacency

matrix or an adjacency list, so EXTRACT-MIN(Q) takes 𝑂(𝑉) running time.

- The processing of RELAX(u, v) takes 𝑂(1) running time;

Overall it has an 𝑂(𝑉2) time complexity.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 77

MD5 hashing algorithm

This project use salted MD5 hashing algorithm to store the passwords in the database. The details of this

algorithm are discussed as follows: [6][7]

1. Dividing message into blocks:

MD5 processes a variable-length message into a fixed-length output of 128 bits. The input message

is broken up into chunks of 512-bit blocks (sixteen 32-bit words); the message is padded so that its

length is divisible by 512. The padding works as follows: first a single bit, 1, is appended to the end of

the message. This is followed by as many zeros as are required to bring the length of the message up

to 64 bits fewer than a multiple of 512. The remaining bits are filled up with 64 bits representing the

length of the original message, modulo 264.

2. The buffer:

MD5 uses a buffer that is made up of four words that are each 32 bits long. These words are called A,

B, C and D. They are initialized as:

Word A: 01 23 45 67

Word B: 89 AB CD EF

Word C: FE DC BA 98

Word D: 76 54 32 10

3. The table:

MD5 also uses a table K that has 64 elements. Element number i is indicated as K i. The table is

computed beforehand to speed up the computations. The elements are computed using the

mathematical sine function:

𝐾𝑖 = |sin(𝑖 + 1)| × 232

4. Four auxiliary functions:

In addition, MD5 uses four auxiliary functions that each take as input three 32-bit words and produce

as output one 32-bit word. They apply the logical operators AND, OR, NOT and XOR to the input bits.

𝐹(𝑋, 𝑌, 𝑍) = (𝑋 ∧ 𝑌) ∨ (¬𝑋 ∧ 𝑍)

𝐺(𝑋, 𝑌, 𝑍) = (𝑋 ∧ 𝑍) ∨ (𝑌 ∧ ¬𝑍)

𝐻(𝑋, 𝑌, 𝑍) = 𝑋 ⊕ 𝑌 ⊕ 𝑍

𝐼(𝑋, 𝑌, 𝑍) = 𝑌 ⊕ (𝑋 ∨ ¬𝑍)

 ⊕, ∧, ∨, ¬ denote the XOR, AND, OR and NOT operations respectively.

5. The contents of the four buffers (A, B, C and D) are now mixed with the words of the input, using the

four auxiliary functions (F, G, H and I). The main algorithm then uses each 512-bit message block in

turn to modify the state. There are four rounds, each involves 16 basic operations. One operation is

illustrated in the figure on the next page:[8]

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 78

- F is one of the four auxiliary functions; (a different function is used in each round)

- Mi denotes a 32-bit block of the message input;

- Ki denotes a 32-bit constant in the table K;

- <<<s denotes a left-bit rotation by s places; (s varies for each operation)

- ⊞ denotes addition modulo 232.

6. MD5 with salt

This project adds salt to MD5 hashing algorithm in order to defend dictionary attacks.

The salt is a constant string set in the code.

The salted MD5 is shown as: Encrypt(text) = MD5(MD5(text) + salt)

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 79

Pseudo-code solutions to requirements

The pseudo-code solutions to the requirements of this project are shown in the following tables:

Table 1 – Log in, Sign up and Primary Menu:

Module Inputs Processing (Pseudo-code) Outputs

0

Log in

- 2 textboxes for users to input

their usernames and passwords:

textBoxUsername

textBoxPassword

- A "Log in" button:

buttonLogin

- A linked table named "New user

– sign up" for a new user to sign

in for an account:

linkLabelSignup

- Hidden labels alongside the

textboxes for displaying error

messages or alerts (visible only

when needed)

labelErrorMessage

Log in operation:

EVENT ButtonLogin_Click

 DEFINE sql, sql2: SQL_COMMAND

 DEFINE reader, reader2: SQL_DATA_READER

 IF textBoxUsername.Text = ""

 OR textBoxPassword.Text = ""

 labelErrorMessage.Text ← "Please enter

 your username/password!"

 ELSE

 DEFINE usernameText, passwordText: STRING

 usernameText ← textBoxUsername.Text

 passwordText ← MD5(textboxPassword.Text)

 sql ← <SQL 0_1 – Query account credential>

 reader ← DATABASE.ExecuteCommand(sql)

 IF reader.ReadNext() ≠ NULL

 sql2 ← <SQL 0_2 – Query account info>

 reader2 ← DATABASE.ExecuteCommand(sql2)

 DEFINE windowPrimaryMenu ← NEW

 WindowPrimaryMenu(accountID,

 username, accountName, accountType)

 GOTO windowPrimaryMenu

 ELSE

 labelErrorMessage.Text ← "Invalid login"

 END IF

 END IF

END EVENT

Log in operation:

If accepted, proceed to the

Primary Menu window:

windowPrimaryMenu

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 80

Module Inputs Processing (Pseudo-code) Outputs

0

Log in

(cont.)

 Sign up operation:

EVENT LinkLabelSignUp_Click

 DEFINE windowSignUp ← NEW WindowSignUp()

 GOTO windowSignUp

END EVENT

Sign up operation:

Proceed to the Sign up window:

windowSignUp

1

Sign up

The Sign up window contains:

- 2 radio buttons for a new user to

choose an account type:

- radioButtonTeacher

- radioButtonStudent

- Textboxes for a new user to

enter their personal information:

- textBoxUsername

- textBoxPassword

- textBoxRepeatPassword

- textBoxForename

- textBoxSurname

- textBoxDateOfBirth

- monthCalendar

- textBoxEmail

- textBoxSchool

- A "Sign up" button:

buttonSignUp

Hidden labels that shows error or

alert message in need

Validation:

FUNCTION BOOLEAN ValidateSignUp(STRING oldName)

 DEFINE sql: SQL_COMMAND

 DEFINE reader: SQL_DATA_READER

 DEFINE validation ← TRUE: BOOLEAN

 IF NOT 6 ≤ textBoxUsername.Text.Length ≤ 20

 labelErrorMessage.Text="Invalid username!"

 validation ← FALSE

 END IF

 sql ← <SQL 1_1 – Check repetitive username>

 reader ← DATABASE.ExececuteCommand(sql)

 IF reader.ReadNext ≠ NULL

 labelErrorMessage.Text ← "This username has

 already been taken!"

 validation ← FALSE

 END IF

 IF textBoxPassword.Text≠textBoxRepeatPassword.Text

 labelErrorMessage.Text ← "Repeat password

 does not match the password!"

 validation ← FALSE

 END IF

 IF <textBoxCompulsoryField>.Text = ""

 labelErrorMessage.Text ← "Empty field!"

 validation ← FALSE

 END IF

 RETURN validation

END FUNCTION

Validation:

<textBoxCompulsoryField>

includes:

- textBoxUsername

- textBoxPassword

- textBoxRepeatPassword

- textBoxForename

- textBoxSurname

- textBoxSchool

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 81

Module Inputs Processing (Pseudo-code) Outputs

1

Sign up

(cont.)

 Accept the sign up request:

EVENT WindowSignUp_buttonSignUp_Click

 DEFINE sql: SQL_COMMAND

 DEFINE reader: SQL_DATA_READER

 IF windowSignUp.ValidateSignUp("")

 DEFINE accountID: INTEGER

 DEFINE accountType: STRING

 IF radioButtonTeacher.Checked = TRUE

 accountType ← "TEACHER"

 ELSE accountType ← "STUDENT"

 END IF

 sql ← <SQL 1_2 – Insert new account credential>

 DATABASE.ExececuteCommand(sql)

 sql ← <SQL 1_3 – Query account ID>

 reader ← DATABASE.ExececuteCommand(sql)

 reader.ReadNext()

 accountID ← reader["AccountID"]

 sql ← <SQL 1_4 – Insert new account information>

 DATABASE.ExececyteCommand(sql)

 GOTO windowLogin

 END IF

END EVENT

Accept the sign up request:

Go to the Log in window:

windowLogin

2

Primary

Menu

3 buttons, each represents a part

of the main section:

- buttonTeaching

- buttonTaskSetting

- buttonQuestionBank

Go to the selected part of the main section:

EVENT buttonTeaching_Click

 GOTO windowSelectTopics

END EVENT

EVENT buttonTaskSetting_Click

 GOTO windowTaskSetting

END EVENT

EVENT buttonQuestionBank_Click

 GOTO windowQuestionBank

END EVENT

The selected part of the main

section:

- windowTeaching

- windowTaskSetting

- windowQuestionBank

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 82

Table 2 – Teaching Section:

Module Inputs Processing (Pseudo-code) Outputs

2.1

Teaching

Section Menu:

Select Topics

Buttons for different topics:

- buttonPrim

- buttonKruskal

- buttonDijkstra

Go to the topic overview window for the selected topic:

EVENT button<Algo>_Click

 GOTO windowTopicOverview(<Algo>)

END EVENT

NB <Algo> represents:

- Prim

- Kruskal

- Dijkstra

The topic overview window for

the selected topic:

windowTopicOverview

- Parameter: Prim

- Parameter: Kruskal

- Parameter: Dijkstra

2.1.*.1

Topic

Overview

Label for showing the objectivs/

prerequisites for learning the

selected algorithm:

labelTopicOverview

Buttons of the example graphs to

carry out the step-by-step

demonstrations:

buttonExample

Show the objectives/prerequisites for learning the selected

algorithm:

PUBLIC CONSTRUCTOR windowTopicOverview(STRING algo)

 DEFINE objectives: DICTIONARY<STRING, LIST<STRING>>

 DEFINE prerequisites: LIST<STRING>

 <Set values to objectives[algo, objectives]>

 <Set values to prerequisites>

 THIS.labelTopicOverview.Text ← "Objectives: "

 + objectives[algo]

 + "Prerequisites: "

 + prerequisites

END CONSTRUCTOR

Go to the step-by-step demonstration window for the example

graph:

EVENT buttonExample_Click

 GOTO window<Algo>

END EVENT

the step-by-step demonstration

windows:

- windowPrimOnGraph

- windowPrimOnMatrix

- windowKruskal

- windowDijkstra

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 83

Module Inputs Processing (Pseudo-code) Outputs

2.1.*.2

Step-by-Step

Demonstrations

- An array of labels for the steps

of the selected algorithm:

- labelStep

- Variables representing the

example graph:

- exampleGraph

- vertices

- mapMatrix

- A panel for the step-by-step

demonstration on graph:

- panelGraph

Provide a full algorithm description, separated by steps;

This has been predetermined by the design of the window.

Please refer to the GUI design.

Show the selected example graph on the window;

PUBLIC CONSTRUCTOR window<Algo>(INTEGER example)

 exampleGraph=NEW <Example>[example](panelGraph)

 vertices ← exampleGraph.vertices

 mapMatrix ← exampleGraph.mapMatrix

 <Paint exampleGraph on panelGraph>

END CONSTRUCTOR

NB

<Algo> represents:

- PrimOnGraph

- PrimOnMatrix

- Kruskal

- Dijkstra

<Example> represents:

- MinimumSpanningTree

Example

- ShortestPathExample

2.1.1.2(1)

Step-by-Step

Demonstrations

(Prim on graph)

- A label for relevant explanation:

- labelInformation

- A label for final answer:

- labelTotalWeight

- An integer recording the current

step that the step-by-step

demonstration is at:

- currentStep

- A real value recording the weight

of the minimum spanning tree

- weightMST

- Two lists of integer:

- visitedVertices

- remainingVertices

Step forward & Illustrations on graph & User options on graph & Finishing up:

EVENT ButtonNext_Click

 <Highlight labelStep[currentStep]>

 <Do not highlight other labels in labelStep>

 IF currentStep = 1

 FOR INTEGER i ← 0 TO mapMatrix.GetSize() - 1 DO

 IF mapMatrix.IsVertexExisting(i)

 remainingVertices.Add(i)

 END IF

 END FOR

 labelInformation.Text ← "Choose a vertex:"

 <Wait for a vertex to be clicked>

 visitedVertices.Add(<clicked vertex>)

 remainingVertices.Remove(<clicked vertex>)

 <Highlight clicked vertex>

 <Do not highlight other vertices>

 currentStep ← 2

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 84

Module Inputs Processing (Pseudo-code) Outputs

2.1.1.2(1)

Step-by-Step

Demonstrations

(Prim on graph)

(cont.)

 ELSE IF currentStep = 2

 DEFINE candidateEdges: LIST<INTEGER>

 FOREACH INTEGER i IN visitedVertices

 FOREACH INTEGER j IN remainingVertices

 <Find edges with least weight>

 <Add them to candidateEdges>

 END FOR

 END FOR

 IF candidateEdges.Count ≥ 2

 <Highliht candidate edges>

 labelInformation.Text="Choose an edge:"

 <Wait for an edge to be clicked>

 weightMST ← weightMST + <weight of clicked edge>

 labelTotalWeight.Text += "+" + <weight of clicked edge>

 examplgeGraph.EdgeFocusOn(<clicked edge>)

 visitedVertices.Add(<starting vertex>)

 remainingVertices.Remove(<finishing vertex>)

 ELSE

 weightMST ← weightMST + <minimum weight>

 labelTotalWeight.Text += "+" + <minimum weight>

 examplgeGraph.EdgeFocusOn(<edge of minimum weight>)

 visitedVertices.Add(<starting vertex>)

 remainingVertices.Remove(<finishing vertex>)

 END IF

 ELSE IF currentStep = 3

 IF remainingVertices.Count > 0

 currentStep ← 2

 ELSE

 labelTotalWeight.Text ← labelTotalWeight.Text + "=" + weightMST

 buttonNext.Enabled ← FALSE

 END IF

 END IF

END EVENT

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 85

Module Inputs Processing (Pseudo-code) Outputs

2.1.1.2(2)

Step-by-Step

Demonstrations

(Prim on matrix)

- A label for relevant explanation:

- labelInformation

- A label for final answer:

- labelTotalWeight

- A table for the graph matrix:

- tableGraph

- An integer recording the current

step that the step-by-step

demonstration is at:

- currentStep

- A real value recording the weight

of the minimum spanning tree

- weightMST

- Two lists of integer:

- visitedVertices

- remainingVertices

- An struct consisting of the

starting vertex, finishing vertex,

and the weight of a new edge:

- newEdge

Step forward & Illustrations on graph & User options on graph & Finishing up:

EVENT ButtonNext_Click

 <Highlight labelStep[currentStep]>

 <Do not highlight other labels in labelStep>

 IF currentStep = 1

 FOR INTEGER i ← 0 TO mapMatrix.GetSize() - 1 DO

 IF mapMatrix.IsVertexExisting(i)

 remainingVertices.Add(i)

 END IF

 END FOR

 labelInformation.Text ← "Choose a vertex:"

 <Wait for a vertex to be clicked>

 visitedVertices.Add(<clicked vertex>)

 remainingVertices.Remove(<clicked vertex>)

 <Cross through the entries of the row of the clicked vertex>

 currentStep ← 2

 ELSE IF currentStep = 2

 DEFINE candidateEdges: LIST<INTEGER>

 FOREACH INTEGER i IN visitedVertices

 FOREACH INTEGER j IN remainingVertices

 <Find entries with least weight>

 <Add them to candidateEdges>

 END FOR

 END FOR

 IF candidateEdges.Count ≥ 2

 <Highliht candidate entries>

 labelInformation.Text="Choose an entry:"

 <Wait for an entry to be clicked>

 newEdge.vStart ← tableGraph.<clicked column>.HeaderText – 'A'

 newEdge.vFinish ← tableGraph.<clicked row>.HeaderText – 'A'

 newEdge.weight ← <weight of the entry>

 <Stop highlighting candidate entries>

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 86

Module Inputs Processing (Pseudo-code) Outputs

2.1.1.2(2)

Step-by-Step

Demonstrations

(Prim on matrix)

(cont.)

 ELSE IF candidateEdges.Count = 1

 newEdge.vStart ← <minimum entry>.ColumnIndex.HeaderText – 'A'

 newEdge.vFinish ← <minimum entry>.RowIndex.HeaderText – 'A'

 newEdge.weight ← <minimum entry>

 END IF

 currentStep ← 3

 ELSE IF currentStep = 3

 IF candidateEdges.Count = 0

 labelTotalWeight.Text ← labelTotalWeight.Text + "=" + weightMST

 buttonNext.Enabled ← FALSE

 ELSE

 currentStep ← 4

 END IF

 ELSE IF currentStep = 4

 weightMST ← weightMST + newEdge.weight

 labelTotalWeight.Text += "+" + newEdge.weight

 examplgeGraph.EdgeFocusOn(newEdge.vStart, newEdge.vFinish)

 visitedVertices.Add(newEdge.vFinish)

 remainingVertices.Remove(newEdge.vFinish)

 DEFINE v1, v2: CHAR

 v1 ← newEdge.vStart + 'A'

 v2 ← newEdge.vFinish + 'A'

 FOR INTEGER col ← 0 TO tableGraph.ColumnCount - 1 DO

 FOR INTEGER row ← 0 TO tableGraph.RowCount – 1 DO

 IF tableGraph.Columns[col].HeaderText = v1

 AND tableGraph.Rows[row].HeaderText = v2

 <Circle tableGraph[col, row]>

 <Mark tableGraph.Columns[col].Header>

 <Cross through the entries of tableGraph.Rows[row]>

 END IF

 END FOR

 END FOR

 currentStep ← 5

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 87

Module Inputs Processing (Pseudo-code) Outputs

2.1.1.2(2)

Step-by-Step

Demonstrations

(Prim on matrix)

(cont.)

 ELSE IF currentStep = 5

 currentStep ← 2

 END IF

END EVENT

2.1.2.2

Step-by-Step

Demonstrations

(Kruskal)

- A label for relevant explanation:

- labelInformation

- A label for final answer:

- labelTotalWeight

- A list of labels of the names of

the edges:

- labelEdges

- A list of labels of the weights of

the edges:

- labelWeights

- A list of labels that marks if each

edge has been used:

- labelEdgeUsed

- A struct Edge consisting of the

starting vertex, finishing vertex,

and the weight of an edge;

- A list of struct Edge containing

all the edges in the graph:

- edgeList

Step forward & Illustrations on graph & User options on graph & Finishing up:

EVENT ButtonNext_Click

 <Highlight labelStep[currentStep]>

 <Do not highlight other labels in labelStep>

 IF currentStep = 1

 edgeCount ← 0

 FOR INEGER v1 ← 0 TO mapMatrix.GetSize() – 1 DO

 FOR INTEGER v2 ← v1 + 1 TO mapMatrix.GetSize() DO

 IF mapMatrix.ContainsEdge(v1, v2) = TRUE

 edgeCount ← edgeCount + 1

 edgeList.Add(new Edge(vStart ← v1, vFinish ← v2,

 weight ← mapMatrix.GetEdge(v1, v2))

 END IF

 END FOR

 END FOR

 <Sort edgeList in non-decreasing order of weight>

 <Show edge names and weights on labelEdges and labelWeights>

 currentEdgeIndex ← 0

 currentWeight ← edgeList[0].weight

 currentStep ← 2

 ELSE IF currentStep = 2

 IF <Cycle check with edgeList[currentEdgeIndex]> = TRUE

 labelEdgeUsed[currentEdgeIndex].Text ← "×"

 LOOP currentEdgeIndex+=1 UNTIL labelEdgeUsed[currentEdgeIndex].Text=""

 currentWeight ← edgeList[currentEdgeIndex].weight

 currentStep ← 2

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 88

Module Inputs Processing (Pseudo-code) Outputs

2.1.2.2

Step-by-Step

Demonstrations

(Kruskal)

(cont.)

- An integer recording the current

step that the demonstration is at:

- currentStep

- An integer recording the weight

of the current edge:

- currentWeight

- An integer recording the index of

the current edge:

- currentEdgeIndex

- An integer recording the number

of edges in the minimum

spanning tree:

- treeEdgeCount

- A real value recording the weight

of the minimum spanning tree

- weightMST

 ELSE

 DEFINE i ← currentEdgeIndex + 1: INTEGER

 DEFINE tempEdgeList: LIST<Edge>

 tempEdgeList.Add(edgeList[currentEdgeIndex])

 WHILE edgeList[i].weight = currentWeight

 AND labelEdgeUsed[i].Text = "" DO

 IF <Cycle check with edgeList[currentEdgeIndex]> = FALSE

 <Highlight edgeList[i]>

 tempEdgeList.Add(edgeList[i])

 ELSE

 labelEdgeUsed[currentEdgeIndex].Text ← "×"

 END IF

 i ← i + 1

 END WHILE

 IF tempEdgeList.Count >= 2

 labelInformation.Text ← "Choose an edge:"

 <Wait for an edge to be clicked>

 treeEdgeCount ← treeEdgeCount + 1

 weightMST ← weightMST + <clicked edge>.weight

 examplgeGraph.EdgeFocusOn(<clicked edge>)

 labelEdgeUsed[<index of clicked edge>].Text ← "√"

 DEFINE i ← 0: INTEGER

 LOOP

 i ← i + 1

 UNTIL labelEdgeUsed[i].Text = ""

 currentEdgeIndex ← i

 currentWeight ← edgeList[currentEdgeIndex].weight

 currentStep ← 3

 ELSE

 treeEdgeCount ← treeEdgeCount + 1

 weightMST ← weightMST + edgeList[currentEdgeIndex].weight

 examplgeGraph.EdgeFocusOn(edgeList[currentEdgeIndex])

 labelEdgeUsed[currentEdgeIndex].Text ← "√"

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 89

Module Inputs Processing (Pseudo-code) Outputs

2.1.2.2

Step-by-Step

Demonstrations

(Kruskal)

(cont.)

 DEFINE i ← 0: INTEGER

 LOOP

 i ← i + 1

 UNTIL labelEdgeUsed[i].Text = ""

 currentEdgeIndex ← i

 currentWeight ← edgeList[currentEdgeIndex].weight

 currentStep ← 3

 END IF

 END IF

 ELSE IF currentStep = 3

 IF treeEdgeCount < mapMatrix.Count() – 1

 currentStep ← 2

 ELSE

 FOR INT i ← 0 TO edgeList.Count DO

 IF labelEdgeUsed[i].Text = "√"

 labelTotalWeight.Text += "+" + labelWeights[i].Text

 END IF

 END FOR

 labelTotalWeight.Text += "=" + weightMST

 buttonNext.Enabled ← FALSE

 END IF

 END IF

END EVENT

2.1.3.2

Step-by-Step

Demonstrations

(Dijkstra)

- A label for relevant explanation:

- labelInformation

- A label for final answer:

- labelFinalResult

- An integer recording the current

step that the demonstration is at:

- currentStep

Step forward & Illustrations on graph & User options on graph & Finishing up:

EVENT ButtonNext_Click

 <Highlight labelStep[currentStep]>

 <Do not highlight other labels in labelStep>

 IF currentStep = 1

 labelInformation.Text ← "Choose a vertex:"

 <Wait for a vertex to be clicked>

 DEFINE vStart ← <clicked vertex>.GetNumberIndex(): INTEGER

 InitialiseSingleSource(vStart)

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 90

Module Inputs Processing (Pseudo-code) Outputs

2.1.3.2

Step-by-Step

Demonstrations

(Dijkstra)

(cont.)

- 3 lists of integer:

- permanentVertices

- temporaryVertices

- candidateVertices

 permanentVertices.Add(vStart)

 FOR INTEGER v ← 0 TO mapMatrix.GetSize() – 1 DO

 IF mapMatrix.IsVertexExisting(v) AND v ≠ vStart

 temporaryVertices.Add(v)

 END IF

 END FOR

 <clicked vertex>.Finalise(0, 1)

 currentStep ← 2

 ELSE IF currentStep = 2

 DEFINE currentVertex=permanentVertex[permanentVertex.Count–1]:INTEGER

 FOREACH INTEGER vertex IN temporaryVertices

 RelaxEdge(currentVertex, vertex)

 END FOR

 currentStep ← 3

 ELSE IF currentStep = 3

 FOREACH INTEGER i IN temporaryVertices

 <Find vertices with least distance, and add them to candidateVertices>

 END FOR

 IF candidateVertices.Count ≥ 2

 <Highlight all DijkstraVertexLabel in candidateVertices>

 labelInformation.Text ← "Choose a vertex:"

 <Wait for a vertex to be clicked>

 DEFINE newVertex ← <clicked vertex>: DijkstraVertexLabel

 permanentVertices.Add(newVertex.GetNumberIndex())

 temporaryVertices.Remove(newVertex.GetNumberIndex())

 newVertex.Finalise(newVertex.distance, permanentVertices.Count)

 ELSE

 DEFINE newVertex ← candidateVertices[0]: DijkstraVertexLabel

 permanentVertices.Add(newVertex.GetNumberIndex())

 temporaryVertices.Remove(newVertex.GetNumberIndex())

 newVertex.Finalise(newVertex.distance, permanentVertices.Count)

 END IF

 currentStep ← 4

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 91

Module Inputs Processing (Pseudo-code) Outputs

2.1.3.2

Step-by-Step

Demonstrations

(Dijkstra)

(cont.)

 ELSE IF currentStep = 4

 IF temporaryVertices.Count > 0

 currentStep ← 2

 ELSE

 labelInformation.Text ← "Choose a vertex:"

 <Wait for a vertex to be clicked>

 DEFINE vFinish ← <clicked vertex>: DijkstraVertexLabel

 labelFinalResult.Text ← "Shortest Route: " + vFinish.distance

 <Use trace back to find the shortest path>

 <Show the path on labelFinalResult>

 <Highlight the path>

 buttonNext.Enabled ← FALSE

 END IF

 END IF

END EVENT

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 92

Table 3 – Task Setting Section (Teacher accounts only):

Module Inputs Processing & Outputs (Pseudo-code)

2.2

Task Setting

Window

- A textbox for users to enter the

name of the question:

- textBoxQuestionName

- A textbox for users to enter a

general description for the

question;

- textBoxProblemDescription

- Buttons for users to create a

graph, in either of the following

forms:

- buttonMatrix

- buttonList

- buttonSketchBoard

- An "Add Task" button:

- buttonAddTask

- A "Save" button.

- buttonSave

Create a graph via adjacency matrix:

EVENT ButtonMatrix_Click

 GOTO windowEditAdjacencyMatrix

END EVENT

Create a graph via adjacency list:

EVENT ButtonList_Click

 GOTO windowEditAdjacencyList

END EVENT

Create a graph via the Sketch Board:

EVENT ButtonSketchBoard_Click

 GOTO windowSketchBoard

END EVENT

Validation:

DEFINE FUNCTION BOOLEAN ValidateTasks(AdjacencyMatrix mapMatrix)

 DEFINE validation ← TRUE: BOOLEAN

 IF <No graph is entered>

 OUTPUT ERROR "Please enter a graph!"

 validation ← FALSE

 END IF

 IF <All subtasks are empty>

 OUTPUT ERROR "Please enter at least a task!"

 validation ← FALSE

 END IF

 FOREACH <subtask for this question>

 IF <task is Minimum Spanning Tree> AND <graph is directed>

 OUTPUT ERROR "Cannot find minimum spanning tree for a directed graph!"

 validation ← FALSE

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 93

Module Inputs Processing & Outputs (Pseudo-code)

2.2

Task Setting

Window

(cont.)

 ELSE IF <Repeated task>

 OUTPUT ERROR "Repeated task!"

 validation ← FALSE

 ELSE IF <empty entry in starting vertex>

 IF <task is Prim> OR <task is Dijkstra>

 OUTPUT ERROR "Empty starting vertex!"

 validation ← FALSE

 END IF

 ELSE IF <empty entry in finishing vertex> AND <task is Dijkstra>

 OUTPUT ERROR "Empty finishing vertex!"

 validation ← FALSE

 END IF

 END FOR

 RETURN validation

END FUNCTION

Save the question:

Store the question in the database:

DEFINE FUNCTION VOID SaveQuestionToDatabase()

 DEFINE sql: SQL_COMMAND

 DEFINE reader: SQL_DATA_READER

 IF <new question>

 sql ← <SQL 2.2_1 – Insert new question>

 ELSE

 sql ← <SQL 2.2_2 – Update question information>

 END IF

 DATABASE.ExecuteCommand(sql)

 IF <new question>

 sql ← <SQL 2.2_3 – Retrieve new QuestionID>

 reader ← DATABASE.ExecuteCommand(sql)

 questionID ← reader["QuestionID"]

 END IF

END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 94

Module Inputs Processing & Outputs (Pseudo-code)

2.2

Task Setting

Window

(cont.)

 Store the corresponding graph in the database:

DEFINE FUNCTION VOID SaveGraphToDatabase(AdjacencyMatrix mapMatrix)

 DEFINE sql: SQL_COMMAND

 DEFINE reader: SQL_DATA_READER

 IF <new question>

 sql ← <SQL 2.2_4 – Insert new graph>

 ELSE

 sql ← <SQL 2.2_5 – Update graph values>

 END IF

 DATABASE.ExecuteCommand(sql)

 IF <new question>

 sql ← <SQL 2.2_6 – Retrieve new GraphID>

 reader ← DATABASE.ExecuteCommand(sql)

 graphID ← reader["GraphID"]

 END IF

 IF <new question>

 sql ← <SQL 2.2_7 – Insert new adjacency matrix>

 ELSE

 sql ← <SQL 2.2_8 – Update adjacency matrix values>

 END IF

 DATABASE.ExecuteCommand(sql)

 IF graphFormat = "SketchBoard"

 DEFINE imageFileName: STRING

 imageFileName ← textBoxQuestionName.TEXT + ".png"

 FILE.SAVE(imageFileName)

 IF NOT <new question>

 sql ← <SQL 2.2_9 – Retrieve previous image>

 reader ← DATABASE.ExecuteCommand(sql)

 FILE.Delete(reader["ImageFileName"])

 sql ← <SQL 2.2_10 – Delete previous image>

 DATABASE.ExecuteCommand(sql)

 END IF

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 95

Module Inputs Processing & Outputs (Pseudo-code)

2.2

Task Setting

Window

(cont.)

 sql ← <SQL 2.2_11 – Insert new graph image>

 DATABASE.ExecuteCommand(sql)

 END IF

END FUNCTION

Solve the user-set subtasks and store the answer in the database:

DEFINE FUNCTION VOID SaveTasksToDatabase

(AdjacencyMatrix mapMatrix)

 DEFINE sql: SQL_COMMAND

 DEFINE reader: SQL_DATA_READER

 IF ValidateTasks(mapMatrix)

 IF NOT <new task>

 sql ← <SQL 2.2_12 – Delete previous tasks>

 DATABASE.ExecuteCommand(sql)

 END IF

 FOREACH task IN taskControls

 IF task.GetCurrentTaskText() = <Dijkstra>

 sql ← <SQL 2.2_13 – Insert Dijkstra task>

 ELSE IF task.GetCurrentTaskText() = <Prim>

 sql ← <SQL 2.2_14 – Insert Prim task>

 ELSE IF task.GetCurrentTaskText() = <Kruskal>

 sql ← <SQL 2.2_15 – Insert Kruskal task>

 ELSE

 sql ← <SQL 2.2_16 – Insert graph task>

 END IF

 DATABASE.ExecuteCommand(sql)

 END FOR

 END IF

END FUNCTION

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 96

Module Inputs Processing & Outputs (Pseudo-code)

2.2

Task Setting

Window

(cont.)

On clicking the "Save" button:
EVENT ButtonSave_Click

 MESSAGEBOX.Show("Save?")

 IF Result = YES

 IF ValidateTasks(taskMatrix)

 SaveQuestionToDatabase()

 SaveGraphToDatabase(taskMatrix)

 SaveTasksToDatabase(taskMatrix)

 GOTO windowPrimaryMenu

 END IF

 END IF

END EVENT

2.2.1

Edit

Adjacency

Matrix

- A 26×26 table for users to enter

the entries of the adjacency

matrix:

tableAdjacencyMatrix

- A "Save" button:

buttonSubmit

Validation & Save the graph:

EVENT ButtonSubmit_Click

 DEFINE flag ← TRUE: BOOLEAN

 DEFINE mapMatrix ← AdjacencyMatrix

 DEFINE mapList ← AdjacencyList

 FOR INTEGER col ← 0 TO 25 DO

 FOR INTEGER row ← 0 TO 25 DO

 DEFINE colName, rowName: STRING

 colName ← col + 'A'

 rowName ← row + 'A'

 IF <Invalid input at tableAdjacencyMatrix[col, row]>

 OUTPUT ERROR "Invalid input at row: " + rowName

 + ", column: "+ colName + "!"

 flag ← FALSE

 ELSE IF tableAdjacencyMatrix[col, row].Value < 0

 OUTPUT ERROR "Negative weight at row: " + rowName

 + ", column: "+ colName + "!"

 flag ← FALSE

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 97

Module Inputs Processing & Outputs (Pseudo-code)

2.2.1

Edit

Adjacency

Matrix

(cont.)

 ELSE

 mapMatrix.SetDirectedEdge(col,row,tableAdjacencyMatrix[col,row].Value)

 mapList.SetDirectedEdge(col,row,tableAdjacencyMatrix[col,row].Value)

 END IF

 END FOR

 END FOR

END EVENT

2.2.2

Edit

Adjacency

List

- A list of 26 vertices for users to

enter the adjacent edges of each

vertices in the adjacency list:

tableAdjacencyList

- A "Save" button:

buttonSubmit

Validation & Save the graph:

EVENT ButtonSubmit_Click

 DEFINE flag ← TRUE: BOOLEAN

 DEFINE mapMatrix ← AdjacencyMatrix

 DEFINE mapList ← AdjacencyList

 FOR INTEGER vertex ← 0 TO 25 DO

 DEFINE adjacentEgdes, newValue, state, vertexName: STRING

 DEFINE finishingVertex: CHAR

 DEFINE weight: REAL

 adjacentEdges ← tableAdjacencyList[1, vertex].Value

 state ← "vertex"

 WHILE adjacentEdges.ReadNextValue() ≠ NULL

 vertexName ← vertex + 'A'

 IF <any invalid input>

 OUTPUT ERROR "Invalid input at vertex " + vertexName + "!"

 flag ← FALSE

 END IF

 IF state = "vertex"

 finishingVertex ← newValue

 IF finishingVertex = vertex + 'A'

 OUTPUT ERROR "Self loop at vertex " + vertexName + "!"

 flag ← FALSE

 state ← "weight"

 ELSE state ← "weight"

 END IF

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 98

Module Inputs Processing & Outputs (Pseudo-code)

2.2.2

Edit

Adjacency

List

(cont.)

 ELSE IF state = "weight"

 IF newValue.Length = 1 AND 'A' ≤ newValue.ToChar() ≤ 'Z'

 IF finishingVertex = vertex + 'A'

 OUTPUT ERROR "Self loop at vertex " + vertexName + "!"

 flag ← FALSE

 ELSE

 mapMatrix.SetDirectedEdge(vertex, finishingVertex, 1)

 mapList.SetDirectedEdge(vertex, finishingVertex, 1)

 finishingVertex ← newValue.ToChar()

 END IF

 state ← "weight"

 ELSE

 weight ← newValue.ToReal()

 IF weight > 0

 mapMatrix.SetDirectedEdge(vertex,finishingVertex,weight)

 mapList.SetDirectedEdge(vertex,finishingVertex,weight)

 ELSE IF weight < 0

 DEFINE vStart, vFinish, edge: STRING

 vStart ← vertex + 'A'

 vFinish ← finishingVertex

 edge ← vStart + vFinish

 OUTPUT ERROR "Negative weight at edge " + egde + "!"

 flag ← FALSE

 END IF

 END IF

 END WHILE

 IF finishingVertex != NULL

 mapMatrix.SetDirectedEdge(vertex, finishingVertex, 1)

 mapList.SetDirectedEdge(vertex, finishingVertex, 1)

 END IF

 END FOR

END EVENT

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 99

Module Inputs Processing & Outputs (Pseudo-code)

2.2.3

Sketch Board

- A menu consisting of:

- A "Vertex" button

buttonVertex

- An "Edge" button

buttonEdge

- A "Tag" button

buttonTag

- A plain board for users to design

graphs: panelSketchBoard

Create a vertex:

EVENT PanelSketchBoard_MouseDown

 IF selectedTool = "buttonVertex"

 IF <vertex count> < 26

 CreateVertex(<new Vertex Name>, <Mouse click position>)

 <Update vertex counter>

 ELSE OUTPUT MESSAGE "Maximum number of vertices has been reached!"

 END IF

 END IF

END EVENT

Edit a vertex/edge:

For vertex: Please refer to Vertex_MouseMove event in Vertex class.

For edge:

EVENT PanelSketchBoard_MouseMove

 IF vStart ≠ NULL AND selectedTool = "buttonEdge"

 DrawEdge(vStart.GetCentreLocation(), <Mouse click position>)

 END IF

END EVENT

For tag:
EVENT Vertex_MouseDoubleClick

 IF selectedTool = "buttonTag"

 <Open new windowVertexTag>

 FOR INTEGER finishingVertex ← 0 TO mapMatrix.GetSize() DO

 IF mapMatrix.IsVertexExisting(finishingVertex)

 AND finishingVertex ≠ startingVertex

 windowVertexTag.AddVertexControl(finishingVertex)

 IF mapMatrix.ContainsEdge(startingVertex, finishingVertex)

 <Show edge weight on VertexTagControl>

 END IF

 END IF

 END FOR

 END IF

END EVENT

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 100

Module Inputs Processing & Outputs (Pseudo-code)

2.2.3

Sketch Board

(cont.)

 EVENT WindowVertexTag_buttonSave_Click_ValidateVertexName

 DEFINE inputVertexNameString: STRING

 inputVertexNameString ← windowVertexTag.textBoxVertexName.Text

 IF inputVertexNameString.Length > 1

 OUTPUT ERROR "Invalid name!"

 ELSE IF NOT 'A' ≤ inputVertexNameString.ToChar() ≤ 'Z'

 OUTPUT ERROR "Invalid name!"

 ELSE IF vertexNameUsed[inputVertexNameString.ToChar() – 'A'] = TRUE

 OUTPUT ERROR "This vertex name has already been taken!"

 ELSE

 OUTPUT submitSuccessful ← TRUE

 END IF

END EVENT

EVENT WindowVertexTag_buttonSave_Click_UpdateVertex

 <Change the name of the vertex>

 FOREACH VertexTagControl edgeControl IN windowVertexTag.edgeControls DO

 DEFINE finishingVertex: INTEGER

 finishingVertex ← edgeControl.GetLabelFinishingVertex().Name – 'A'

 IF edgeControl.GetTextBoxWeight().Enabled = TRUE

 DEFINE weight: REAL

 weight ← edgeControl.GetTextBoxWeight().Text.ToReal()

 vTagChanged.SetEdge(finishingVertex, weight)

 mapMatrix.SetDirectedEdge(vTagChanged, finishingVertex, weight)

 mapList.SetDirectedEdge(vTagChanged, finishingVertex, weight)

 ELSE

 vTagChanged.RemoveEdge(finishingVertex)

 mapMatrix.RemoveEdge(vTagChanged, finishingVertex)

 mapList.RemoveEdge(vTagChanged, finishingVertex)

 END IF

 END FOR

END EVENT

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 101

Module Inputs Processing & Outputs (Pseudo-code)

2.2.3

Sketch Board

(cont.)

 Create an edge:

Draw edge:

EVENT PanelSketchBoard_MouseDown

 IF selectedTool = "buttonEdge"

 IF vStart = NULL

 IF <vertex count> < 26

 CreateVertex(<new Vertex Name>, <Mouse click position>)

 <Update vertex counter>

 <new vertex>.SetSelected(TRUE)

 <new vertex>.SetDraggable(FALSE)

 vStart ← <new vertex>

 ELSE OUTPUT MESSAGE "Maximum number of vertices has been reached!"

 END IF

 ELSE

 IF <vertex count> < 26

 CreateVertex(<new Vertex Name>, <Mouse click position>)

 <Update vertex counter>

 <new vertex>.SetSelected(TRUE)

 <new vertex>.SetDraggable(FALSE)

 vFinish ← <new vertex>

 IF isDirected = TRUE

 vStart.SetEdge(vFinish)

 mapMatrix.SetDirectedEdge(vStart, vFinish)

 mapList.SetDirectedEdge(vStart, vFinish)

 ELSE

 vStart.SetEdge(vFinish)

 vFinish.SetEdge(vStart)

 mapMatrix.SetUndirectedEdge(vStart, vFinish)

 mapList.SetUndirectedEdge(vStart, vFinish)

 END IF

 vStart.SetSelected(FALSE)

 vFinish.SetSelected(FALSE)

 vStart ← NULL

 vFinish ← NULL

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 102

Module Inputs Processing & Outputs (Pseudo-code)

2.2.3

Sketch Board

(cont.)

 ELSE

 OUTPUT MESSAGE "Maximum number of vertices has been reached!"

 vStart.SetSelected(FALSE)

 vStart ← NULL

 vFinish ← NULL

 END IF

 END IF

 END IF

END EVENT

EVENT Vertex_MouseDown_DrawEdge

 IF selectedTool = "buttonEdge"

 vertex.SetDraggable(FALSE)

 IF vStart = NULL

 vStart ← vertex

 ELSE

 vFinish ← vertex

 IF isDirected = TRUE

 vStart.SetEdge(vFinish)

 mapMatrix.SetDirectedEdge(vStart, vFinish)

 mapList.SetDirectedEdge(vStart, vFinish)

 ELSE

 vStart.SetEdge(vFinish)

 vFinish.SetEdge(vStart)

 mapMatrix.SetUndirectedEdge(vStart, vFinish)

 mapList.SetUndirectedEdge(vStart, vFinish)

 END IF

 vStart.SetSelected(FALSE)

 vFinish.SetSelected(FALSE)

 vStart ← NULL

 vFinish ← NULL

 END IF

 END IF

END EVENT

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 103

Module Inputs Processing & Outputs (Pseudo-code)

2.2.3

Sketch Board

(cont.)

 Select directed/undirected edge:

EVENT ButtonEdge_MouseDown

 timerShowEdgeProperties.Start()

END EVENT

EVENT ButtonEdge_MouseUp

 selectedTool ← "buttonEdge"

 timerShowEdgeProperties.Stop()

END EVENT

EVENT TimerShowEdgeProperties_Tick

 buttonDirected.Visible ← TRUE

 buttonUndirected.Visible ← TRUE

END EVENT

EVENT ButtonDirected_Click

 isDirected ← TRUE

 buttonDirected.Visible ← FALSE

 buttonUndirected.Visible ← FALSE

END EVENT

EVENT ButtonUndirected_Click

 isDirected ← FALSE

 buttonDirected.Visible ← FALSE

 buttonUndirected.Visible ← FALSE

END EVENT

Save the graph:

EVENT ButtonEdge_MouseDown

 THIS.Close()

END EVENT

Other modules can call the GetMatrix() and GetList() functions to get the graph.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 104

Table 4 – Question Bank Section:

Module Inputs Processing & Outputs (Pseudo-code)

2.3

Question

Bank Section:

List of

Questions

A list of all the questions stored in

the database:

tableQuestions

Buttons for operations on

questions:

- buttonAddQuestion

- buttonEditQuestion

- buttonDeleteQuestion

- buttonDoQuestion

Query the questions from the database:

FUNCTION VOID ResetTableQuestions()

 tableQuestions.Clear()

 DEFINE sql: SQL_COMMAND

 DEFINE reader: SQL_DATA_READER

 sql ← <SQL 2.3_1 – Query all the questions from the Question Bank>

 reader ← DATABASE.ExecuteCommand(sql)

 DEFINE count ← 0: INTEGER

 WHILE reader.ReadNext()

 tableQuestions.AddRow()

 tableQuestions["QuestionID", count].Value ← reader["QuestionID"]

 tableQuestions["DateModified", count].Value ← reader["DateModified"]

 tableQuestions["QuestionName", count].Value ← reader["QuestionName"]

 count ← count + 1

 END WHILE

END FUNCTION

Add questions: (teacher accounts only)

EVENT ButtonAddQuestion_Click

 GOTO windowTaskSetting

END EVENT

Edit questions: (teacher accounts only)

Please refer to Module 2.3.2 – Edit Questions.

Delete questions: (teacher accounts only)

Please refer to Module 2.3.3 – Delete Questions.

Do questions:

Please refer to Module 2.3.4 – Do Questions.

2.3.1

Add

Questions

Save the new question:

Please refer to Module 2.2 – Task Setting Window.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 105

Module Inputs Processing & Outputs (Pseudo-code)

2.3.2

Edit

Questions

Load the content of the question:

FUNCTION VOID EditQuestion(STRING questionID)

 DEFINE sql: SQL_COMMAND

 DEFINE reader: SQL_DATA_READER

 DEFINE graphID: INTEGER

 DEFINE graphFormat: STRING

 OPEN NEW windowTaskSetting

 sql ← <SQL 2.3.2_1 – Query general information and the graph of the question>

 reader ← DATABASE.ExecuteCommand(sql)

 windowTaskSetting.textBoxQuestionName.Text ← reader["QuestionName"]

 windowTaskSetting.textBoxProblemDescription.Text ← reader["ProblemDescription"]

 graphID ← reader["GraphID"]

 sql ← <SQL 2.3.2_2 - Query the correct representation for the graph>

 reader ← DATABASE.ExecuteCommand(sql)

 graphFormat ← reader["GraphFormat"]

 sql ← <SQL 2.3.2_3 - Query the graph in the form of an adjacency matrix>

 reader ← DATABASE.ExecuteCommand(sql)

 FOR INTEGER v1 ← 0 TO windowTaskSetting.taskMatrix.GetSize() – 1 DO

 FOR INTEGER v2 ← 0 TO windowTaskSetting.taskMatrix.GetSize() – 1 DO

 DEFINE fieldName ← "Edge" + GetVertexName(v1) + GetVertexName(v2): STRING

 windowTaskSetting.taskMatrix.SetDirectedEdge(v1, v2, reader[fieldName])

 END FOR

 END FOR

 IF graphFormat = "AdjacencyMatrix"

 <Show adjacency matrix on windowTaskSetting>

 ELSE IF graphFormat = "AdjacencyList"

 <Show adjacency list on windowTaskSetting>

 ELSE IF graphFormat = "SketchBoard"

 sql ← <SQL 2.3.2_4 – Query the graph image>

 reader ← DATABASE.ExecuteCommand(sql)

 <Show graph image ← reader["ImageFileName"] on windowTaskSetting>

 END IF

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 106

Module Inputs Processing & Outputs (Pseudo-code)

2.3.2

Edit

Questions

(cont.)

 sql ← <SQL 2.3.2_5 – Query the subtasks>

 reader ← DATABASE.ExecuteCommand(sql)

 DEFINE count ← 0: INTEGER

 WHILE reader.ReadNext()

 IF count ≠ 0

 windowTaskSetting.AddTaskControls()

 END IF

 windowTaskSetting.taskControls[count].ComboBoxTask.Text ← reader["TaskDescription"]

 windowTaskSetting.taskControls[count].ComboBoxStartingVertex.Text ← reader["StartingVertex"]

 windowTaskSetting.taskControls[count].ComboBoxFinishingVertex.Text ← reader["FinishingVertex"]

 count ← count + 1

 END WHILE

END FUNCTION

EVENT ButtonEditQuestion_Click

 DEFINE questionID: STRING

 FOR INTEGER row ← 0 TO tableQuestions.RowCount DO

 IF tableQuestions["QuestionID", row].Selected = TRUE

 questionID ← tableQuestions["QuestionID", row].Value

 END IF

 END FOR

 IF question ≠ NULL

 EditQuestion(questionID)

 END IF

END EVENT

Save the edited question:

Please refer to Module 2.2 – Task Setting Window.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 107

Module Inputs Processing & Outputs (Pseudo-code)

2.3.3

Delete

Questions

Delete the selected question & Refresh the list of questions:

EVENT ButtonDeleteQuestion_Click

 DEFINE questionID, graphID, graphFormat, imageToDelete: STRING

 DEFINE sql ← SQL_COMMAND

 DEFINE reader ← SQL_DATA_READER

 FOR INTEGER row ← 0 TO tableQuestions.RowCount DO

 IF tableQuestions["QuestionID", row].Selected = TRUE

 questionID ← tableQuestions["QuestionID", row].Value

 END IF

 END FOR

 IF question ≠ NULL

 MESSAGEBOX.Show("Delete?")

 IF Result = YES

 sql ← <SQL 2.3.3_1 – Query graph ID for deletion>

 reader ← DATABASE.ExecuteCommand(sql)

 graphID ← reader["GraphID"]

 sql ← <SQL 2.3.3_2 – Query the format of the graph to decide which deletion process to be followed>

 reader ← DATABASE.ExecuteCommand(sql)

 graphFormat ← reader["GraphFormat"]

 IF graphFormat = "SketchBoard")

 sql ← <SQL 2.3.3_3 – Query graph image for deletion>

 reader ← DATABASE.ExecuteCommand(sql)

 imageToDelete ← reader["ImageFileName"]

 FILE.Delete(imageToDelete)

 sql ← <SQL 2.3.3_4 – Delete the record in GRAPHIMAGES table>

 DATABASE.ExecuteCommand(sql)

 END IF

 sql ← <SQL 2.3.3_5 – Delete question information, subtasks and the graph>

 DATABASE.ExecuteCommand(sql)

 ResetTableQuestions()

 END IF

 END IF

END EVENT

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 108

Module Inputs Processing & Outputs (Pseudo-code)

2.3.4

Do Questions

User controls to show the content

of the selected question on labels.

This includes:

- labelQuestionName

- labelProblemdescription

- taskControls

Table to show the graph of the

selected question in the form of

adjacency matrix/list, if any:

- tableGraph

Picture box to show the graph of

the selected question, if any:

- pictureBoxGraph

A "Mark it" button:

- buttonSubmit

Query the content of the question:

FUNCTION VOID DoQuestion(STRING questionID)

 DEFINE sql: SQL_COMMAND

 DEFINE reader: SQL_DATA_READER

 DEFINE graphID: INTEGER

 DEFINE graphFormat: STRING

 OPEN NEW windowDoQuestion

 sql←<SQL 2.3.4_1–Query general information and the graph of the question>

 reader ← DATABASE.ExecuteCommand(sql)

 windowDoQuestion.labelQuestionName.Text ← reader["QuestionName"]

 windowDoQuestion.labelProblemDescription.Text←reader["ProblemDescription"]

 graphID ← reader["GraphID"]

 sql ← <SQL 2.3.4_2 - Query the correct representation for the graph>

 reader ← DATABASE.ExecuteCommand(sql)

 graphFormat ← reader["GraphFormat"]

 sql ← <SQL 2.3.4_3 - Query the graph in the form of an adjacency matrix>

 reader ← DATABASE.ExecuteCommand(sql)

 FOR INTEGER v1 ← 0 TO windowDoQuestion.taskMatrix.GetSize() – 1 DO

 FOR INTEGER v2 ← 0 TO windowDoQuestion.taskMatrix.GetSize() – 1 DO

 DEFINE fieldName: STRING

 fieldName ← "Edge" + GetVertexName(v1) + GetVertexName(v2)

 windowDoQuestion.taskMatrix.SetDirectedEdge(v1,v2,reader[fieldName])

 END FOR

 END FOR

 IF graphFormat = "AdjacencyMatrix"

 <Show adjacency matrix on windowDoQuestion.tableGraph>

 ELSE IF graphFormat = "AdjacencyList"

 <Show adjacency list on windowDoQuestion.tableGraph>

 ELSE IF graphFormat = "SketchBoard"

 sql ← <SQL 2.3.4_4 – Query the graph image>

 <Show graph image on windowDoQuestion.pictureBoxGraph>

 END IF

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 109

Module Inputs Processing & Outputs (Pseudo-code)

2.3.4

Do Questions

(cont.)

 sql ← <SQL 2.3.4_5 – Query the subtasks and their answers>

 reader ← DATABASE.ExecuteCommand(sql)

 DEFINE count ← 0: INTEGER

 WHILE reader.ReadNext()

 DEFINE taskDescription ← reader["TaskDescription"]: STRING

 windowDoQuestion.taskControls[count].labelTask.Text←taskDescription

 IF taskDescription = <Prim>

 windowDoQuestion.taskControls[count].labelTask.Text

 += ", starting from " + reader["StartingVertex"]

 ELSE IF taskDescription = <Dijkstra>

 windowDoQuestion.taskControls[count].labelTask.Text

 +="from"+reader["StartingVertex"]+"to"+reader["FinishingVertex"]

 END IF
 IF taskDescription = <write adjacency matrix>
 OR <write adjacency list>
 OR <draw graph>

 <Prepare button to proceed to the graph editing windows>

 windowDoQuestion.taskControls[count].SetAnswerMatrix(taskMatrix)

 ELSE

 <Prepare textbox for users to enter the answer>

 windowDoQuestion.taskControls[count].SetAnswerValue(reader["Answer"])

 END IF

 count ← count + 1

 END WHILE

END FUNCTION

EVENT ButtonDoQuestion_Click

 DEFINE questionID: STRING

 FOR INTEGER row ← 0 TO tableQuestions.RowCount DO

 IF tableQuestions["QuestionID", row].Selected = TRUE

 questionID ← tableQuestions["QuestionID", row].Value

 END IF

 END FOR

 IF question ≠ NULL

 DoQuestion(questionID)

 END IF

END EVENT

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 110

Module Inputs Processing & Outputs (Pseudo-code)

2.3.4

Do Questions

(cont.)

 Mark the question:

EVENT ButtonSubmit_Click

 DEFINE score ← 0: INTEGER

 FOREACH DoTaskControl task IN THIS.taskControls DO

 IF <answer is numeric>

 IF task.textBoxInputAnswer.Text = task.GetAnswerValue()

 score ← score + 1

 task.labelCorrectWrong.Text ← "√"

 ELSE

 task.labelCorrectWrong.Text ← "×"

 END IF

 ELSE IF <answer is graphic>

 IF task.GetAnswerMatrix().CompareTo(task.GetInputMatrix()) = NULL

 score ← score + 1

 task.labelCorrectWrong.Text ← "√"

 ELSE

 task.labelCorrectWrong.Text ← "×"

 END IF

 END IF

 task.labelCorrectWrong.Visible ← TRUE

 task.buttonShowAnswer.Enabled ← TRUE

 END FOR

 labelScore.Text ← "Your score: " + score.ToString()

 labelScore.Visible ← TRUE

END EVENT

2.3.4.1

Mark

Questions

For each subtask, provide:

- Labels showing the marks

awarded for the questions

labelAnswer

- A “Show Answer” button

buttonShowAnswer

Show answer:

EVENT ButtonShowAnswer_Click

 IF taskControl.textBoxInputAnswer.Visible = TRUE

 IF taskControl.buttonShowAnswer.Text = "Show Answer"

 taskControl.labelAnswer.Visible ← TRUE

 taskControl.buttonShowAnswer.Text ← "Hide Answer"

 ELSE

 taskControl.labelAbswer.Visible ← FALSE

 taskControl.buttonShowAnswer.Text ← "Show Answer"

 END IF

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 111

Module Inputs Processing & Outputs (Pseudo-code)

2.3.4.1

Mark

Questions

(cont.)

 ELSE

 IF taskControl.labelTask.Text = <write adjacency matrix>

 OPEN NEW windowEditAdjacencyMatrix

 <Show taskControl.GetAnswerMatrix() as an adjacency matrix on

 windowEditAdjacencyMatrix>

 windowEditAdjacencyMatrix.tableAdjacencyMatrix.ReadOnly ← TRUE

 ELSE IF taskControl.labelTask.Text = <write adjacency list>

 OPEN NEW windowEditAdjacencyList

 <Show taskControl.GetAnswerMatrix() as an adjacency list on

 windowEditAdjacencyList>

 windowEditAdjacencyList.tableAdjacencyList.ReadOnly ← TRUE

 ELSE IF taskControl.labelTask.Text = <draw graph>

 <Show answer graph image>

 END IF

 END IF

END EVENT

Table 5 – User Accounts:

Module Inputs Processing (Pseudo-code) Outputs

3.1

Account

Setting

The Sign up window:

windowSignUp

Query the account information:

Please refer to the AccountMenu control.

Update account information:

Please refer to the AccountMenu control.

N/A

3.2

Quit

N/A Quit the system:

Please refer to the AccountMenu control.

N/A

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 112

SQL pseudo-commands list

The following SQL pseudo-commands will be used in the above mentioned places:

SQL

Reference

No.

Module

Implemented
Pseudo-Command Comments

0_1 Log in

SELECT AccountType FROM ACCOUNTS

WHERE Username = '<usernameText>'

AND Password = '<passwordText>';

- Query account credential

0_2 Log in

SELECT <accountType>S.AccountID,

<accountType>S.Forename,

<accountType>S.Surname,

FROM <accountType>S, ACCOUNTS

WHERE ACCOUNTS.Username = '<usernameText>'

AND ACCOUNTS.AccountID = <accountType>S.AccountID;

- Query account information

- <accountType> represents the value of

reader["AccountType"]

1_1 Sign up

SELECT * FROM ACCOUNTS

WHERE Username = '<textBoxUsername.Text>'

AND Username != '<oldName>'

- Check repetitive username

1_2 Sign up

INSERT INTO ACCOUNTS (Username, Password, AccountType)

VALUES ('<textBoxUsername.Text>',

 '<MD5(<textBoxPassword.Text>)>',

 '<accountType>');

- Insert new account credential

- <MD5()> represents:

<MD5Hashing.Encrypt()>

1_3 Sign up
SELECT AccountID FROM ACCOUNTS

WHERE Username = '<textBoxUsername.Text>';
- Query account ID

1_4 Sign up

INSERT INTO <accountType>S (Forename, Surename,

 DateOfBirth, Email, School, AccountID)

VALUES ('<textBoxForename.Text>',

 '<textBoxSurname.Text>',

 '<textBoxDateOfBirth.Text>',

 '<textBoxEmail.Text>',

 '<textBoxSchool.Text>'

 <accountID>);

- Insert new account information

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 113

SQL

Reference

No.

Module

Implemented
Pseudo-Command Comments

2.2_1
Task Setting

Window

INSERT INTO QUESTIONBANK (QuestionName, DateModified,

 ProblemDescription, GraphID)

VALUES ('<textBoxQuestionName.Text>',

 datetime(),

 '<textBoxProblemDescription.Text>',

 <graphID>, <questionID>);

- Insert new question

- <graphID> represents the value of

FormTaskSetting.graphID

- <questionID> represents the value of

FormTaskSetting.questionID

2.2_2
Task Setting

Window

UPDATE QUESTIONBANK

SET QuestionName = '<textBoxQuestionName.Text>',

 DateModified = datetime(),

 ProblemDescription =

<textBoxProblemDescription.Text>

WHERE QuestionID = <questionID>;

- Update question information

- <questionID> represents the value of

FormTaskSetting.questionID

2.2_3
Task Setting

Window

SELECT QuestionID FROM QUESTIONBANK

WHERE rowid = last_insert_rowid();
- Retrieve new QuestionID from the Question

Bank

2.2_4
Task Setting

Window

INSERT INTO GRAPHS (GraphFormat)

VALUES <GraphFormName>;
- Insert new graph

2.2_5
Task Setting

Window

UPDATE GRAPHS

SET GraphFormat = <GraphFormName>

WHERE GraphID = <graphID>;

- Update graph values

- <graphID> represents the value of

FormTaskSetting.graphID

2.2_6
Task Setting

Window

SELECT GraphID FROM GRAPHS

WHERE rowid = last_insert_rowid();
- Retrieve new GraphID from the GRAPHS table

2.2_7
Task Setting

Window

INSERT INTO ADJACENCYMATRICES (<All required fields>)

VALUES (<Values of the fields>);
- Insert new adjacency matrix

- Please refer to the Back-end Design of this

document for the required fields of the table

ADJACENCYMATRICES.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 114

SQL

Reference

No.

Module

Implemented
Pseudo-Command Comments

2.2_8
Task Setting

Window

UPDATE ADJACENCYMATRICES

SET <fields> = <values>

WHERE GraphID = <graphID>;

- Update adjacency matrix values

- Please refer to the Back-end Design of this

document for the required fields of the table

ADJACENCYMATRICES.

- <graphID> represents the value of

FormTaskSetting.graphID

2.2_9
Task Setting

Window

SELECT ImageFileName FROM GRAPHIMAGES

WHERE GraphID = <graphID>;
- Retrieve previous image

2.2_10
Task Setting

Window

DELETE FROM GRAPHIMAGES

WHERE GraphID = <graphID>;
- Delete previous image

2.2_11
Task Setting

Window

INSERT INTO IMAGES (ImageFileName, GraphID)

VALUES (<imageFileName>, <graphID>);
- Insert new image

- <imageFileName> represents the value of

FormTaskSetting.imageFileName

2.2_12
Task Setting

Window

DELETE FROM TASKS

WHERE QuestionID = <questionID>;
- Delete previous tasks

- <questionID> represents the value of

FormTaskSetting.questionID

2.2_13
Task Setting

Window

INSERT INTO TASKS (TaskDescription, StartingVertex,

FinishingVertex, QuestionID, AnswerValue)

VALUES ('<task.GetCurrentTaskText()>',

 '<task.GetComboBoxStartingVertex()>',

 '<task.GetComboBoxFinishigVertex()>',

 <quesionID>,

 <mapMatrix.Dijkstra(<StartingVertex>,

 <FinishingVertex>));

- Insert task of Dijkstra's algorithm

- <StartingVertex> represents the value of

task.GetComboBoxStartingVertex()

- <FinishingVertex> represents the value of

task.GetComboBoxFinishingVertex()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 115

SQL

Reference

No.

Module

Implemented
Pseudo-Command Comments

2.2_14
Task Setting

Window

INSERT INTO TASKS (TaskDescription, StartingVertex,

 QuestionID, AnswerValue)

VALUES ('<task.GetCurrentTaskText()>',

 '<task.GetComboBoxStartingVertex()>',

 <quesionID>,

 <mapMatrix.Prim(<StartingVertex>));

- Insert task of Prim's algorithm

2.2_15
Task Setting

Window

INSERT INTO TASKS(TaskDescription,QuestionID,AnswerValue)

VALUES ('<task.GetCurrentTaskText()>',

 <quesionID>,

 <mapMatrix.Kruskal());

- Insert task of Kruskal's algorithm

2.2_16
Task Setting

Window

INSERT INTO TASKS(TaskDescription,QuestionID,GraphID)

VALUES ('<task.GetCurrentTaskText()>',

 <quesionID>, <graphID>);

- Insert task of graph representations

2.3_1
List of

Questions

SELECT QuestionID, DateModified, QuestionName

FROM QUESTIONBANK;
- Query all the questions from the Question Bank

2.3.2_1
Edit

Questions

SELECT QuestionName, ProblemDescription, GraphID

FROM QUESTIONBANK

WHERE QuestionID = <questionID>;

- Query general information and the graph of the

question

- <questionID> represents the value of

FormQuestionBank.questionID

2.3.2_2
Edit

Questions

SELECT GraphFormat FROM GRAPHS

WHERE graphID = <graphID>;
- Query the correct representation for the graph

- <graphID> represents the value of

FormQuestionBank.graphID

2.3.2_3
Edit

Questions

SELECT * FROM ADJACENCYMATRICES

WHERE GraphID = <graphID>;
- Query the graph in the form of an adjacency

matrix

2.3.2_4
Edit

Questions

SELECT ImageFileName FROM GRAPHIMAGES

WHERE GraphID = <graphID>;
- Query the graph image

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 116

SQL

Reference

No.

Module

Implemented
Pseudo-Command Comments

2.3.2_5
Edit

Questions

SELECT TaskDescription, StartingVertex,

FinishingVertex

FROM TASKS

WHERE QuestionID = <QuestionID>;

- Query the subtasks

2.3.3_1
Delete

Questions

SELECT GraphID FROM QUESTIONBANK

WHERE QuestionID = <QuestionID>;
- Query graph ID for deletion

- <questionID> represents the value of

FormQuestionBank.questionID

2.3.3_2
Delete

Questions

SELECT GraphFormat FROM GRAPHS

WHERE GraphID = <graphID>;
- Query the format of the graph to decide which

deletion process to be followed

- <graphID> represents the value of

FormQuestionBank.graphID

2.3.3_3
Delete

Questions

SELECT ImageFileName FROM GRAPHIMAGES

WHERE GraphID = <graphID>;
- Query the graph image for deletion

2.3.3_4
Delete

Questions

DELETE FROM GRAPHIMAGES

WHERE GraphID = <graphID>;
- Delete the record in GRAPHIMAGES table

2.3.3_5
Delete

Questions

DELETE FROM QUESTIONBANK

WHERE QuestionID = <questionID>;

DELETE FROM TASKS

WHERE QuestionID = <questionID>;

DELETE FROM GRAPHS

WHERE GraphID = <graphID>;

DELETE FROM ADJACENCYMATRICES

WHERE GraphID = <graphID>;

- Delete question information, subtasks and the

graph

2.3.4_1
Do

Questions

SELECT QuestionName, ProblemDescription, GraphID

FROM QUESTIONBANK

WHERE QuestionID = <questionID>;

- Query information and the graph of the question

- <questionID> represents the value of

FormQuestionBank.questionID

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 117

SQL

Reference

No.

Module

Implemented
Pseudo-Command Comments

2.3.4_2
Do

Questions

SELECT GraphFormat FROM GRAPHS

WHERE graphID = <graphID>;
- Query the correct representation for the graph

- <graphID> represents the value of

FormQuestionBank.graphID

2.3.4_3
Do

Questions

SELECT * FROM ADJACENCYMATRICES

WHERE GraphID = <graphID>;
- Query the graph in the form of an adjacency

matrix

2.3.4_4
Do

Questions

SELECT ImageFileName FROM GRAPHIMAGES

WHERE GraphID = <graphID>;
- Query the graph image

2.3.4_5
Do

Questions

SELECT TaskDescription, StartingVertex,

FinishingVertex, AnswerValue

FROM TASKS

WHERE QuestionID = <QuestionID>;

- Query the subtasks and their answers

3.1_1
Account

Settings

SELECT ACCOUNTS.Username,

<accountType>S.Forename,

<accountType>S.Surname,

<accountType>S.DateOfBirth,

<accountType>S.Email,

<accountType>S.School

FROM ACCOUNTS, <accountType>S

WHERE ACCOUNTS.AccountID = <accountID>

AND <accountType>S.AccountID = <accountID>;

- Query current account information

- <accountType> represents the value of

AccountMenu.accountType

3.1_2
Account

Settings

UPDATE ACCOUNTS

SET Username = '<textBoxUsername.Text>',

 Password = '<MD5(<textboxPassword.Text>)>',

WHERE AccountID = <accountID>;

- Update account credentials

- <MD5()> represents:

<MD5Hashing.Encrypt()>

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 118

SQL

Reference

No.

Module

Implemented
Pseudo-Command Comments

3.1_3
Account

Settings

UPDATE <accountType>S

SET Forename = '<textBoxForename.Text>',

 Surname = '<textBoxSurname.Text>',

 DateOfBirth = '<textBoxDateOfBirth.Text>',

 Email = '<textBoxEmail.Text>',

 School = '<textBoxSchool.Text>'

WHERE AccountID = <accountID.Text>;

- Update personal information

- <accountType> represents the value of

AccountMenu.accountType

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 119

Implementation

Source code for the project

Please refer to Appendix 2 - GraphTeachingTool Source Code.pdf for the source code of this project.

Representative samples of techniques used in Group A (as indicated in the Example technical skills table)

are also annotated in the code.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 120

Completeness of solution

Module No. Requirement Met
Partially

met
Not met Reference to code

0
Log in operation ✔ FormLogin.cs: ButtonLogin_Click()

Sign up operation ✔ FormLogin.cs: LinkLabelSignup_LinkClicked()

1

Validation: Rejection
✔

FormSignup.cs:

- ValidateEmail()

- ValidateSignUp()

- MonthCalendar_DateSelected()

Validation: Approval
✔

Accept the sign up request

✔

FormLogin.cs:

- FormSignUp_buttonSignUp_Click()

- OtherForms_FormClosed()

2
Go to the selected part of the main section

✔
FormPrimaryMenu.cs

2.1
Go to the topic overview window for the

selected topic
✔

FormSelectTopics.cs

2.1.1.1

Show the objectives/prerequisites for

learning Prim’s Algorithm
✔

FormTopicOverview.cs: FormTopicOverview()

Go to the step-by-step demonstration

window for the example graph
✔

FormTopicOverview.cs: ButtonExample_Click()

2.1.2.1

Show the objectives/prerequisites for

learning Kruskal’s Algorithm
✔

FormTopicOverview.cs: FormTopicOverview()

Go to the step-by-step demonstration

window for the example graph
✔

FormTopicOverview.cs: ButtonExample_Click()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 121

Module No. Requirement Met
Partially

met
Not met Reference to code

2.1.3.1

Show the objectives/prerequisites for

learning Dijkstra’s Algorithm
✔

FormTopicOverview.cs: FormTopicOverview()

Go to the step-by-step demonstration

window for the example graph
✔

FormTopicOverview.cs: ButtonExample_Click()

2.1.1.2

Provide a full algorithm description for

Prim’s Algorithm, separated by steps
✔

FormPrimOnGraph.cs: Implemented by GUI design

FormPrimOnMatrix.cs: Implemented by GUI design

Show the selected example graph on the

window

✔

FormPrimOnGraph.cs:

- FormPrimOnGraph()

- PanelGraph_Paint()

FormPrimOnMatrix.cs:

- FormPrimOnMatrix()

- PanelGraph_Paint()

Step forward
✔

FormPrimOnGraph.cs: ButtonNext_Click()

FormPrimOnMatrix.cs: ButtonNext_Click()

Step backward ✔

Illustrations on graph

✔

FormPrimOnGraph.cs:

- PanelGraph_Paint()

- EdgeFocusOn()

- EdgeFocusOff()

FormPrimOnMatrix.cs:

- PanelGraph_Paint()

- EdgeFocusOn()

- EdgeFocusOff()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 122

Module No. Requirement Met
Partially

met
Not met Reference to code

2.1.1.2

User operations on graph

✔

FormPrimOnGraph.cs:

- Vertex_MouseDown_ChooseStartingVertex()

- LabelWeights_Click()

FormPrimOnMatrix.cs:

- DataGridViewGraph_CellContentClick()

Finishing-up
✔

FormPrimOnGraph.cs: ButtonNext_Click()

FormPrimOnMatrix.cs: ButtonNext_Click()

Step-by-step demonstrations on a user-

chosen graph instead of the default

example graphs

 ✔

2.1.2.2

Provide a full algorithm description for

Kruskal’s Algorithm, separated by steps
✔

FormKruskal.cs: Implemented by GUI design

Show the selected example graph on the

window ✔

FormKruskal.cs:

- FormKruskal()

- PanelGraph_Paint()

Step forward ✔ FormKruskal.cs: ButtonNext_Click()

Step backward ✔

Illustrations on graph

✔

FormKruskal.cs:

- PanelGraph_Paint()

- EdgeFocusOn()

- EdgeFocusOff()

User operations on graph ✔ FormKruskal.cs: LabelEdge_Click()

Finishing-up ✔ FormKruskal.cs: ButtonNext_Click()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 123

Module No. Requirement Met
Partially

met
Not met Reference to code

2.1.2.2

Step-by-step demonstrations on a user-

chosen graph instead of the default

example graphs

 ✔

2.1.3.2

Provide a full algorithm description for

Dijkstra’s Algorithm, separated by steps
✔

FormDijkstra.cs: Implemented by GUI design

Show the selected example graph on the

window
✔

FormDijkstra.cs:

- FormDijkstra()

- PanelGraph_Paint()

Step forward ✔ FormDijkstra.cs: ButtonNext_Click()

Step backward ✔

Illustrations on graph

✔

FormDijkstra.cs:

- PanelGraph_Paint()

- UndirectedEdgeFocusOn()

- DirectedEdgeFocusOn()

- UndirectedEdgeFocusOff()

- DirectedEdgeFocusOff()

User operations on graph
✔

FormDijkstra.cs: LabelVertexName_Click()

Finishing-up

✔

FormDijkstra.cs:

- ButtonNext_Click()

- LabelVertexName_Click()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 124

Module No. Requirement Met
Partially

met
Not met Reference to code

2.1.3.2

Step-by-step demonstrations on a user-

chosen graph instead of the default

example graphs

 ✔

2.2

Create a graph via adjacency matrix ✔ FormTaskSetting.cs: ButtonMatrix_Click()

Create a graph via adjacency list ✔ FormTaskSetting.cs: ButtonList_Click()

Create a graph via the Sketch Board ✔ FormTaskSetting.cs: ButtonSketchBoard_Click()

Add, edit, and delete a subtask:

✔

FormTaskSetting.cs:

- AddTaskControls()

- ButtonAddTask_Click()

- ButtonRemoveTask_Click()

TaskSettingControls.cs:

- ComboBoxTask_TextChanged()

- ComboBoxVertex_TextChanged()

Validation
✔

FormTaskSetting.cs: ValidateTasks()

Save the question

✔

FormTaskSetting.cs:

- SaveGraphToDatabase()

- SaveQuestionToDatabase()

- SaveTasksToDatabase()

- FormTaskSetting_FormClosed()

- ButtonSave_Click()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 125

Module No. Requirement Met
Partially

met
Not met Reference to code

2.2.1

Validation ✔ FormEditAdjacencyMatrix.cs: ButtonSubmit_Click()

Save the graph

✔

FormEditAdjacencyMatrix.cs: ButtonSubmit_Click()

FormTaskSetting.cs:

- GraphEditingForms_ButtonSubmit_Click()

- GraphEditingForms_FormClosed()

- SaveGraph()

2.2.2

Validation ✔ FormEditAdjacencyList.cs: ButtonSubmit_Click()

Save the graph

✔

FormEditAdjacencyList.cs: ButtonSubmit_Click()

FormTaskSetting.cs:

- GraphEditingForms_ButtonSubmit_Click()

- GraphEditingForms_FormClosed()

- SaveGraph()

2.2.3

Create a vertex

✔

FormSketchBoard.cs:

- SetCurrentTool()

- CreateVertex()

- UpdateVertexNameCounter()

- PanelSketchBoard_MouseDown()

- ButtonVertex_MouseUp()

Edit a vertex/edge

✔

FormSketchBoard.cs:

- ResetBoard()

- DisselectOthers()

- DisselectAllVertices()

- UpdateVertexNameCounter()

- Vertex_MouseDown_TagState()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 126

Module No. Requirement Met
Partially

met
Not met Reference to code

2.2.3

Edit a vertex/edge (cont.)

✔

- Vertex_MouseDown_Disselect()

- Vertex_MouseDown_DrawEdge()

- Vertex_MouseDoubleClick()

- Vertex_KeyPress_Delete()

- PanelSketchBoard_MouseMove()

- ButtonTag_MouseUp()

- FormVertexTag_Load()

- FormVertexTag_buttonSave_Click_ValidateVertexName()

- FormVertexTag_buttonSave_Click_UpdateVertex()

- FormVertexTag_buttonCancel_Click()

- ButtonClearPanel_Click()

FormVertexTag.cs:

- TextBox_TextChanged()

- ButtonSave_Click_ValidateWeights()

VertexTagControls.cs:

- CheckBoxContainsEdge_CheckChanged()

Create an edge

✔

FormSketchBoard.cs:

- SetCurrentTool()

- ResetBoard()

- PanelSketchBoard_MouseDown()

- PanelSketchBoard_MouseMove()

- ButtonEdge_MouseUp()

- ButtonEdge_MouseDown()

- TimerShowEdgeProperties_Tick()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 127

Module No. Requirement Met
Partially

met
Not met Reference to code

2.2.3

Create an edge (cont.)
✔

- ButtonDirected_Click()

- ButtonUndirected_Click()

Save the graph

✔

FormSketchBoard.cs: ButtonSubmit_Click()

FormTaskSetting.cs:

- GraphEditingForms_ButtonSubmit_Click()

- GraphEditingForms_FormClosed()

- SaveGraph()

2.3

Query the questions form the database

✔

FormQuestionBank.cs:

- FormQuestionBank()

- ResetDataGridViewQuestions()

Filter/sort the questions ✔ FormQuestionBank.cs: Implemented by GUI design

2.3.1

Add questions

✔

FormQuestionBank.cs:

- DataGridViewQuestions_CellDoubleClick()

- ButtonAddQuestion_Click()

2.3.2

Edit questions

✔

FormQuestionBank.cs:

- EditQuestion()

- DataGridViewQuestions_CellDoubleClick()

- ButtonEditQuestion_Click()

2.3.3 Delete questions ✔ FormQuestionBank.cs: ButtonDeleteQuestion_Click()

2.3.4

Do questions

✔

FormQuesitonBank.cs: ButtonDoQuestion_Click()

FormDoQuestion.cs:

- ButtonInputGraph_Click()

- GraphEditingForms_buttonSubmit_Click()

- GraphEditingForms_FormClosed()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 128

Module No. Requirement Met
Partially

met
Not met Reference to code

2.3.4
Query the content of the information ✔ FormQuestionBank.cs: DoQuestion()

Mark the question ✔ FormDoQuestion.cs: ButtonSubmit_Click()

2.3.4.1
Show answer ✔ FormDoQuestion.cs: ButtonShowAnswer_Click()

Step-by-step explanation for a subtask ✔

3.1

Query the account information ✔ AccountMenu.cs: ButtonAccountSettings_Click()

Update account information

✔

AccountMenu.cs:

- FormSignUp_buttonSignUp_Click()

- FormSignUp_FormClosed()

3.2 Quit the system ✔ AccountMenu.cs: ButtonQuit_Click()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 129

Example technical skills

NB As most of the techniques are implemented in a lot of places in the code, only representative samples will be shown here.

Group Model/Algorithms Representative reference to code

A

Complex data model in database Program.cs: Relational database for the accounts and the question bank is defined there

Cross-table parameterised SQL Cross-table parameterised SQL used in:

FormLogin.cs:

- ButtonLogin_Click()

FormTaskSetting.cs:

- SaveGraphToDatabase()

- SaveQuestionToDatabase()

- SaveTasksToDatabase()

FormQuestionBank.cs:

- EditQuestion()

- DoQuestion()

- ButtonDeleteQuestion_Click()

Aggregate SQL functions FormTaskSetting.cs:

- last_insert_rowid() used in SaveGraphToDatabase()

- datetime() used in SaveQuestionToDatabase()

User/CASE-generated DDL script Program.cs: Main()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 130

Group Model/Algorithms Representative reference to code

A

Hash tables, lists, stacks, queues, graphs, trees or

structures of equivalent standard

Graphs are constantly used thoughout the entire project:

It is designed in:

- Graph.cs as the general representation of a graph

- AdjacencyMatrix.cs as the adjacency matrix representation of a graph

- AdjacencyList.cs as the adjacency list representation of a graph

And is also implemented in a wide range of relative areas in the project (please refer to

the AdjacencyMatrix and AdjacencyList objects.)

Trees are used for the minimum spanning tree algorithms:

Graph.cs:

- Prim_GetTree_Matrix()

- Prim_GetTree_List()

- Kruskal_GetTree_Matrix()

- Kruskal_GetTree_List()

Lists are constantly used throughout the entire project, for supporting the implementation

of the graph structures and algorithms, and the dynamic generation of objects in the

front end system, such as user controls.

Representative samples:

AdjacencyList.cs:

- List<AdjacentEdge> list

Graph.cs:

- Prim(): List<int> visitedVertices, remainingVertices

- Dijkstra(): List<int> permanetVertices, tempraryVertices

- Dijkstra_GetShortestPath(): List<int> shortestPath

- List<UnionFind> unionFindVertices

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 131

Group Model/Algorithms Representative reference to code

A

Hash tables, lists, stacks, queues, graphs, trees or

structures of equivalent standard

(cont.)

FormSketchBoard.cs:

- List<Vertex> vertices

ShortestPathExample.cs:

- List<DijkstraVertexLabel> vertices

FormTaskSetting.cs:

- List<TaskSettingControls> taskControls

FormVertexTag.cs:

- List<VertexTagControls> edgeControls

FormDoQuestion.cs:

- List<DoTaskControls> taskControls

Graph/Tree Traversal Graph traversed in Prim’s, Kruskal’s and Dijkstra’s algorithms:

Graph.cs:

- Prim()

- Prim_GetTree_Matrix()

- Prim_GetTree_List()

- Kruskal()

- Kruskal_GetTree_Matrix()

- Kruskal_GetTree_List()

- Dijkstra()

- Dijkstra_GetShortestPath()

FormPrimOnGraph.cs

FormPrimOnMatrix.cs

FormKruskal.cs

FormDijkstra.cs

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 132

Group Model/Algorithms Representative reference to code

A

List operations Lists are constantly used and operated throughout the entire project, for supporting the

implementation of the graph structures and algorithms, and the dynamic generation of

objects in the front end system, such as user controls.

(Please refer to the lists part in the “Hash tables, lists, stacks, queues, graphs, trees or

structures of equivalent standard” row in this table for representative samples.)

Linked list maintenance Linked list maintenance is used to maintain the Union-Find structure properties.

Union-Find structure defined in:

 UnionFind.cs

Linked list maintenance implemented in:

 Graph.cs:

- InitialiseUnionFind()

- Update()

- Union()

 FormKruskal.cs:

- InitialiseUnionFind()

- Update()

- Union()

Hashing MD5 Hashing algorithm is used in hashing user passwords.

MD5 algorithm designed in:

 MD5Hashing.cs

It is implemented in:

 FormLogin.cs:

- ButtonLogin_Click()

- FormSignUp_buttonSignUp_Click()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 133

Group Model/Algorithms Representative reference to code

A

Files organised for direct access Program.cs: Database.sqlite organised in Main()

FormTaskSetting.cs: Graph image PNG files organised in SaveGraph()

Recursive algorithms Graph.cs and FormKruskal.cs: QuickSort()

Complex user-defined algorithms (eg opetimisation,

minimisation, scheduling, pattern matching) or equivalent

difficulty

Prim’s and Kruskal’s minimum spanning tree algorithm, as well as Dijkstra’s shortest

path algorithms are implemented in the project.

Refer to Graph.cs:

- Prim()

- Prim_GetTree_Matrix()

- Prim_GetTree_List()

- Kruskal()

- Kruskal_GetTree_Matrix()

- Kruskal_GetTree_List()

- Dijkstra()

- Dijkstra_GetShortestPath()

Mergesort or similarly efficient sort Graph.cs and FormKruskal.cs: QuickSort()

Complex user-defined use of object-orientated

programming (OOP) model, eg classes, inheritance,

composition, polymorphism, interfaces

OOP models are widely implemented throughout the entire project.

All the object are in classes.

Inheritance:

The AdjacencyMatrix class and the AdjacencyList class inherits the Graph class.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 134

Group Model/Algorithms Representative reference to code

A

Complex user-defined use of object-orientated

programming (OOP) model, eg classes, inheritance,

composition, polymorphism, interfaces

(cont.)

Polymorphism:

Graph.cs:

- SetEdge()

- SetDirectedEdge()

- SetUndirectedEdge()

Vertex.cs:

- SetEdge()

FormKruskal.cs, FormPrimOnGraph.cs, FormPrimOnMatrix.cs:

- EdgeFocusOn()

- EdgeFocusOff()

MinimumSpanningTreeExample.cs:

- CreateEdge()

- LabelFocusOn()

- LabelFocusOff()

Interfaces:

Interfaces used in Graph.cs:

- IGraphAlgorithms (Reference: IGraphAlgorithms.cs)

- IGraphOperations (Reference: IGraphOperations.cs)

Dynamic generation of objects based on complex user-

defined use of OOP model

Dynamic generation of all the forms;

(Please refer to all the .cs files with names beginning with “Form”)

Dynamic generation of all the vertices:

- Vertex.cs

- DijkstraVertexLabel.cs

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 135

Group Model/Algorithms Representative reference to code

A

Dynamic generation of objects based on complex user-

defined use of OOP model

(cont.)

Dynamic generation of all the graph data structures:

- AdjacencyMatrix.cs

- AdjacencyList.cs

Dynamic generation of the example graphs:

- MinimumSpanningTreeExample.cs

- MinimumSpanningTreeExample1.cs

- MinimumSpanningTreeExample2.cs

- ShortestPathExample.cs

- ShortestPathExample1.cs

- ShortestPathExample2.cs

Dynamic generation of the combinations of user controls:

- TaskSettingControls.cs

- DoTaskControls.cs

- VertexTagControls.cs

Dynamic generation of other data structures or models:

- UnionFind.cs

- MD5Hashing.cs

B

Single table or non-parameterised SQL Single-table parameterised SQL used in:

FormLogin.cs:

- ButtonLogin_Click()

- FormSignUp_buttonSignUp_Click()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 136

Group Model/Algorithms Representative reference to code

B

Single table or non-parameterised SQL

(cont.)

FormSignUp.cs:

- ValidateSignUp()

FormTaskSetting.cs:

- SaveGraphToDatabase()

- SaveQuestionToDatabase()

- SaveTasksToDatabase()

FormQuestionBank.cs:

- ResetDataGridViewQuestions()

- EditQuestion()

- DoQuestion()

- ButtonDeleteQuestion_Click()

Multi-dimensional arrays Multi-dimentional arrays are widely used in the project, such as:

AdjacencyMatrix.cs:

- double[,] map

MinimumSpanningTreeExample.cs and ShortestPathExample.cs:

- Label[,] labelWeights

Dictionaries FormTopicOverview.cs:

- Dictionary<string, string> algorithmNames

- Dictionary<string, List<string>> objectives

FormTaskSetting.cs:

- Dictionary<string, string> tasks

Simple user defined algorithms (eg a range of

mathematical/statistical calculations)

FormSketchBoard.cs:

- ResetBoard()

FormDijkstra.cs:

- PanelGraph_Paint()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 137

Group Model/Algorithms Representative reference to code

C

Single-dimentional arrays Single-dimentional arrays are widely used in the project, such as:

AdjacencyList.cs:

- List<AdjacentEdge>[] list

FormSketchBoard.cs:

- bool[] vertexNameUsed

Appropriate choice of simple data types Appropriate choice of int, double, Boolean, char, string data types thoughout the entire

project.

Simple mathematical calculations (eg average) FormKruskal.cs, FormPrimOnGraph.cs, FormPrimOnMatrix.cs:

- PanelGraph_Paint()

Coding styles

NB As most of the characteristics are demonstrated throughout the entire code, only representative samples will be shown here.

Style Characteristic Representative reference to code

Excellent

Modules (subroutines) with appropriate interfaces Encapsulation used in the majority of classes, including but not limited to:

- Class.cs

- AdjacencyMatrix.cs

- AdjacencyList.cs

- UnionFind.cs

- TaskSettingControls.cs

- DoTaskControls.cs

- VertexTagControls.cs

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 138

Style Characteristic Representative reference to code

Excellent

Loosely coupled modules (subroutines) – module code

interacts with other parts of the program through its

interface only

Module code only calls the encapsulated functions of other classes when interacting

with those classes.

Cohesive modules (subroutines) – module code does

just one thing

In FormSketchBoard.cs, One event is divided into multiple functions, each doing only

one task:

1.1 Vertex_MouseDown_TagState()

1.2 Vertex_MouseDown_Disselect()

1.3 Vertex_MouseDown_DrawEdge()

2.1 FormVertexTag_buttonSave_Click_ValidateVertexName()

2.2 FormVertexTag_buttonSave_Click_UpdateVertex()

Modules (collections of subroutines) – subroutines with

common purpose grouped

Functions with common purpose grouped within each class by #region blocks,

for example:

FormTaskSetting.cs:

- #region Variables

- #region Constructor

- #region Operation Functions

- #region Events for graph editing forms

- #region Events for editing tasks

- #region Events for editing tasks from Question Bank

- #region Events for submission

Functions within the same class are grouped in a single .cs file.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 139

Style Characteristic Representative reference to code

Excellent

Defensive programming Users are not able to enter invalid inputs, for example:

- In FormLogIn.cs: MaxLength for textBoxUsername and textBoxPassword is

20, so users cannot enter anything longer than 20 characters;

- In FormTaskSetting.cs: User can only select one of the subtasks from the

drop-down menus for the subtasks, and can only select one of the vertices

form the drop-down menus for the vertices;

- In FormVertexTag.cs: MaxLength for textBoxVertexName is 1, so users can

only enter 1 character for the name of a vertex.

Validation functions used in:

- FormLogin.cs: ButtonLogin_Click()

- FormSignUp.cs: ValidateEmail(), ValidateSignUp()

- FormSketchBoard.cs:

FormVertexTag_buttonSave_Click_ValidateVertexName()

- FormTaskSetting.cs: ValidateTasks()

- FormVertexTag.cs: ButtonSave_Click_ValidateWeights()

Good exception handling try-catch clause used in:

FormEditAdjacencyList.cs: ButtonSubmit_Click()

FormEditAdjacencyList.cs: ButtonSubmit_Click()

FormQuestionBank.cs:

- EditQuestion()

- DoQuestion()

FormSignUp.cs: ValidateEmail()

FormVertexTag.cs: ButtonSave_Click_ValidateWeights()

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 140

Style Characteristic Representative reference to code

Good

Well-designed user interface Users only need to interact with the system through front-end, which have been

achieved by GUI design.

Modularisation of code The entire code is divided into modules.

Good use of local variables Every function uses local variables.

Minimal use of global variables No global variable is used thourghout the entire system.

Only necessary global variables are used within each class, for example:

In FormQuestionBank.cs:

- string sql

- FormTaskSetting formTaskSetting

- FormDoQuestion formDoQuestion

using (…) {…} is used to reduce the number of global variables (object defined in

(…) will be disposed immediately after the execution of {…}), including but not limited

to:

- All the implementation of SQL: SQLiteConnection, SQLiteCommand, and

SQLiteDataReader;

- Graphics

- StreamReader

- Bitmap.

Managed casting of types Almost all casting of types are done explicitly using the Convert class in C#.

Please refer to all the appearances of Convert in the code.

Almost all casting types to string operations are done using the ToString() function

in C#. Please refer to all the appearances of ToString() in the code.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 141

Style Characteristic Representative reference to code

Good

Use of constants Constant maximum limit for the number of vertices in Graph.cs:

- const int SIZE = 26

Readonly dictionaries and lists in FormTopicOverview.cs (values of the dictionaries

and lists are defined in the constructor function FormTopicOverview()):

- algorithmNames

- objectives_Prim

- objectives_Kruskal

- objectives_Dijkstra

- objectives

- prerequisites

Appropriate indentation Appropriate indentation is done throughout the code.

Consistent style throughout Coding style is consistent throughout the code.

Basic

Meaningful identifier names Meaningful identifier names are used throughout the code, for example:

- User controls: textBoxUsername, textBoxPassword in FormLogin.cs,

indicating the text boxes for users to enter the username and the password;

- Variables: graphEditingFormName in FormTaskSetting.cs, representing the

name of the graph editing form that has been called;

- Functions: Meaningful "Get" and "Set" functions used in Graph.cs, such as:

SetEdge()

SetDirectedEdge()

SetUndirectedEdge()

Annotation used effectively where required Annotation used in almost every global variable, important functions, and used within

a function to explain what those variables represent, what those functions do, and

what effect a block of code has.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 142

Testing

Testing plan

The system is to be tested module by module. Please refer to the hierarchical diagram in the Requirements – Structure of the project part of this document

again:

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 143

Testing data

The following testing data are used to test the robustness of this project. Please also refer to the video about the results of testing.

NB The types of the testing data are shown in the following formats:

- Normal data: Green

- Extreme data (Correct): Light orange

- Extreme data (Erroneous): Orange

- Erroneous data: Red

Module 0 – Log in:

Requirement Description Inputs or Operation Expected Outcome Result

Log in operation

Attempt to log in with an

empty username and an

empty password

Username: [Empty string]

Password: [Empty string]

Error message: “Please

enter your username

and password!”

Passed

Log in operation

Attempt to log in with an

empty username and

either a valid or invalid

password

Username: [Empty string]

Password: ValidPassword

Error message: “Please

enter your username!”
Passed

Username: [Empty string]

Password: short

Error message: “Please

enter your username!”
Passed

Username: [Empty string]

Password: R34LlyLongP4ssWOrdButTooLongToBeTypedIn

User can only enter the

first 20 characters of this

password (R34LlyLong

P4ssWOrdBu);

Error message: “Please

enter your username!”

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 144

Requirement Description Inputs or Operation Expected Outcome Result

Log in operation

Attempt to log in with an

empty password and

either a valid or invalid

username

Username: Victor.Zhao

Password: [Empty string]

Error message: “Please

enter your password!” Passed

Username: short

Password: [Empty string]

Error message: “Please

enter your password!” Passed

Username:

ThisIsAReallyLongUsernameThatUsersCannotEvenTypeItIn

Password: [Empty string]

User can only type in the

first 20 characters of that

username (ThisIsAReall

yLongUse);

Error message: “Please

enter your password!”

Passed

Log in operation

Attempt to log in with

either an invalid user-

name or an invalid

password or both

Username: short

Password: ValidPassword

Error message: "Invalid

username/password!" Passed

Username:

ThisIsAnotherReallyLongUsernameThatExceedsTheCharacterLimit

Password: ValidPassword

User can only enter the

first 20 characters of this

username (ThisIsAnothe

rReallyL);

Error message: "Invalid

username/password!"

Passed

Username: Victor.Zhao

Password: short

Error message: "Invalid

username/password!"
Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 145

Requirement Description Inputs or Operation Expected Outcome Result

Username: Victor.Zhao

Password: An0TH3rP4sSw0rDThatIsTooLongSoItCannotbeUsed

User can only enter the

first 20 characters of this

password (An0TH3rP4s

Sw0rDThatI);

Error message: "Invalid

username/password!"

Passed

Username: short

Password: short

Error message: "Invalid

username/password!" Passed

Username:

ThisIsAReallyLongUsernameJustToShowHowTheValidationWorks

Password: ThisIsAReallyLongPasswordWithTheSamePurpose

User can only enter the

first 20 characters of this

username (ThisIsAReall

yLongUse), and the first

20 characters of this

password (ThisIsAReally

LongPas)

Error message: "Invalid

username/password!"

Passed

Log in operation

Attempt to log in with a

username that is not in

the database

Username: UsernameNotInDB

Password: ValidPassword

Error message: "Invalid

username/password!" Passed

Log in operation
Attempt to log in with an

incorrect password

Username: Victor.Zhao

Password: IncorrectPassword

Error message: "Invalid

username/password!"
Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 146

Requirement Description Inputs or Operation Expected Outcome Result

Log in operation

Attempt to log in with a

username that is in the

database, but in wrong

cases, and an incorrect

password

Username: VICTOR.ZHAO

Password: IncorrectPassword

Error message: "Invalid

username/password!"

Passed

Log in operation

Attempt to log in with a

username that is in the

database, but in wrong

cases, and a correct

password

Username: VICTOR.ZHAO

Password: \/3RyStr0n9P@$$W()rD

Error message: "Invalid

username/password!"

Passed

Log in operation

Attempt to log in via SQL

injection

Username: ' OR TRUE; --

Password: ValidPassword

Error message: "Invalid

username/password!" Passed

Username: Victor.Zhao

Password: ' OR TRUE; --

Error message: "Invalid

username/password!" Passed

Username: ' OR TRUE; --

Password: ' OR TRUE; --

Error message: "Invalid

username/password!" Passed

Log in operation

Correct log in Username: Sarah.Shakibi

Password: Sarah.Shakibi

Proceed to the Primary

Menu window (teacher

account)

Passed

Username: Victor.Zhao

Password: \/3RyStr0n9P@$$W()rD

Proceed to the Primary

Menu window (student

account)

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 147

Requirement Description Inputs or Operation Expected Outcome Result

Username: UsernameLength=Limit

Password: PasswordLength=Limit

Proceed to the Primary

Menu window (student

account)

Passed

Username: short0

Password: Password

Proceed to the Primary

Menu window (student

account)

Passed

Username: ' OR 0=0; --

Password: CorrectPassword

Proceed to the Primary

Menu window (student

account)

Passed

Sign up

operation

Button testing Click "Sign up" link label Proceed to the Sign up

window
Passed

Module 1 – Sign up

Requirement Description Inputs or Operation Expected Outcome Result

Validation

Attempt to sign up with

at least one required

field empty

Username: [Empty string]

Password: [Empty string]

Repeat password: [Empty string]

Forename: [Empty string]

Surname: [Empty string]

Date of birth: [Empty string]

Email: [Empty string]

School: [Empty string]

Error message:

“Please choose a username!”

“Please choose a password!”

“Please enter your forename!”

“Please enter your surname!”

“Please enter your school!” Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 148

Requirement Description Inputs or Operation Expected Outcome Result

Validation

(cont.)

Attempt to sign up with

at least one required

field empty

Username: NewUser

Password: [Empty string]

Repeat password: [Empty string]

Forename: [Empty string]

Surname: [Empty string]

Date of birth: [Empty string]

Email: [Empty string]

School: [Empty string]

Error message:

“Please choose a password!”

“Please enter your forename!”

“Please enter your surname!”

“Please enter your school!” Passed

Username: NewUser

Password: NewPassword

Repeat password: [Empty string]

Forename: [Empty string]

Surname: [Empty string]

Date of birth: [Empty string]

Email: [Empty string]

School: [Empty string]

Error message:

“The repeated password does

not match the password!”

“Please enter your forename!”

“Please enter your surname!”

“Please enter your school!”

Passed

Username: NewUser

Password: NewPassword

Repeat password: NewPassword

Forename: [Empty string]

Surname: [Empty string]

Date of birth: [Empty string]

Email: [Empty string]

School: [Empty string]

Error message:

“Please enter your forename!”

“Please enter your surname!”

“Please enter your school!”
Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 149

Requirement Description Inputs or Operation Expected Outcome Result

Validation

(cont.)

Attempt to sign up with

at least one required

field empty

Username: NewUser

Password: NewPassword

Repeat password: NewPassword

Forename: NewForename

Surname: [Empty string]

Date of birth: [Empty string]

Email: [Empty string]

School: [Empty string]

Error message:

“Please enter your surname!”

“Please enter your school!”

Passed

Username: NewUser

Password: NewPassword

Repeat password: NewPassword

Forename: NewForename

Surname: NewSurname

Date of birth: [Empty string]

Email: [Empty string]

School: [Empty string]

Error message:

“Please enter your school!”

Passed

Validation

Attempt to sign up with a

username that already

exists in the database

Username: Victor.Zhao

Password: NewPassword

Repeat password: NewPassword

Error message:

“This username has already

been taken!”
Passed

Validation

Attempt to sign up with

either an invalid user-

name or an invalid pass-

word or both

Username: short

Password: ValidPassword

Repeat password: ValidPassword

Error message:

“Invalid username!”
Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 150

Requirement Description Inputs or Operation Expected Outcome Result

Validation

(cont.)

Attempt to sign up with

either an invalid user-

name or an invalid pass-

word or both

Username:

AReallyLongUsernameThatExceedsTheCharacterLimit

Password: ValidPassword

Repeat password: ValidPassword

User can only enter the first 20

characters of this username

(AReallyLongUsernameT) Passed

Username: NewUser

Password: short

Repeat password: short

Error message:

“Invalid password!”
Passed

Username: NewUser

Password:

AVeryLongPasswordDefinitelyLongerThan20Characters

Repeat password:

AVeryLongPasswordDefinitelyLongerThan20Characters

User can only enter the first 20

characters of this password

(AVeryLongPasswordDef)
Passed

Username:

AReallyLongUsernameJustToShowThatItCannotBeTypedIn

Password:

AReallyLongPasswordAlsoToShowThatItCannotBeTypedIn

Repeat password:

AReallyLongPasswordAlsoToShowThatItCannotBeTypedIn

User can only enter the first 20

characters of this username

(AReallyLongUsernameJ), and

the first 20 characters of this

password (AReallyLongPassw

ordA)

Passed

Validation

Attempt to sign up with

repeat password not

matching the password

Username: NewUser

Password: NewPassword

Repeat password: DifferentPassword

Error message:

“The repeated password does

not match the password!”

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 151

Requirement Description Inputs or Operation Expected Outcome Result

Validation

(cont.)

Attempt to sign up with

repeat password not

matching the password

Username: NewUser

Password: NewPassword

Repeat password: newpassword

Error message:

“The repeated password does

not match the password!” Passed

Validation

Attempt to sign up with

date of birth not in the

past

On the month calendar provided, choose date of birth:

19 January 2038

This date does not show on

the "Date of birth" textbox
Passed

On the month calendar provided, choose date of birth:

[Present day]

This date does not show on

the "Date of birth" textbox
Passed

Validation

Attempt to sign up with

invalid email address

Email: This is definitely not an email address Error message:

“Invalid email address!”

Passed

Validation

Attempt to sign up via

SQL injection

Username: ' OR TRUE; --

Password: ' OR TRUE; --

Repeat password: ' OR TRUE; --

Forename: ' OR TRUE; --

Surname: ' OR TRUE; --

Date of birth: ' OR TRUE; --

Email: ' OR TRUE; --

School: ' OR TRUE; --

The "Date of birth" textbox is

not editable;

Error message:

“Invalid email address!”

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 152

Requirement Description Inputs or Operation Expected Outcome Result

Validation

(cont.)

Attempt to sign up via

SQL injection

Username: ' OR TRUE; --

Password: ' OR TRUE; --

Repeat password: ' OR TRUE; --

Forename: ' OR TRUE; --

Surname: ' OR TRUE; --

Date of birth: [Empty string]

Email: [Empty string]

School: ' OR TRUE; --

No error message shown

Proceed to the Log in window

Passed

Validation

Correct sign up Username: NewTeacherAccount

Password = Repeat password: NewTeacher

Account Type: Teacher

Forename: New

Surname: Teacher

Date of birth: 7/25/1972

Email: NewTeacher@example.com

School: Example School

No error message shown

Proceed to the Log in window

Passed

Username: NewStudentAccount

Password = Repeat password: NewStudent

Account Type: Student

Forename: New

Surname: Student

Date of birth: 1/1/2000

Email: NewStudent@example.com

School: Example School

No error message shown

Proceed to the Log in window

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 153

Requirement Description Inputs or Operation Expected Outcome Result

Validation

(cont.)

Correct sign up

Username: Victor.ZHAO

Password = Repeat password: AnotherVictorZhao:)

Account Type: Student

Forename: Another Victor Zhao

Surname: with different cases

Date of birth: 1/24/1999

Email: victor.zhao@ellesmere.com

School: Ellesmere College

No error message shown

Proceed to the Log in window

Passed

Username: short1

Password = Repeat password: Password

Account Type: Student

Forename: Shortest username

Surname: and shortest password

Date of birth: 1/1/2000

Email: short1@example.com

School: Example School

No error message shown

Proceed to the Log in window

Passed

Username: LongestValidUsername

Password = Repeat password: LongestValidPassword

Account Type: Student

Forename: Longest username

Surname: and longest password

Date of birth: 1/1/2000

Email: long@example.com

School: Example School

No error message shown

Proceed to the Log in window

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 154

Requirement Description Inputs or Operation Expected Outcome Result

Validation

(cont.)

Correct sign up

Username: TestAccount

Password = Repeat password: TestAccount

Account Type: Teacher

Forename: Test for

Surname: optional fields

Date of birth: [Empty string]

Email: [Empty string]

School: Example School

No error message shown

Proceed to the Log in window

Passed

Accept the sign

up request

Database and button

testing

With a correct sign up, click “Sign up” button The account credential of the

new account is saved in the

ACCOUNT table;

The personal information of

the new account is saved in

the TEACHER/STUDENT

table, based on the account

type;

Proceed to the Log in window

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 155

Module 2 – Primary Menu

Requirement Description Inputs or Operation Expected Outcome Result

Go to the selected part

of the main section

Button testing Click “Teaching Section” button Proceed to the Teaching Section window Passed

Click “Set Tasks” button (on a teacher account) Proceed to the Task Setting window Passed

Click “Question Bank” button Proceed to the List of Questions window Passed

Module 2.1 – Teaching Section Menu: Select Topics

Requirement Description Inputs or Operation Expected Outcome Result

Go to the topic

overview window for

the selected topic

Button testing Click “Prim’s Algorithm” button

Proceed to the Prim’s Minimum Spanning Tree

Algorithm Topic Overview window
Passed

Click “Kruskal’s Algorithm” button Proceed to the Kruskal’s Minimum Spanning

Tree Algorithm Topic Overview window
Passed

Click “Dijkstra’s Algorithm” button Proceed to the Dijkstra’s Shortest Path

Algorithm Topic Overview window
Passed

Module 2.1.*.1 – Topic Overview

Requirement Description Inputs or Operation Expected Outcome Result

Show the objectives

and prerequisites for

learning the selected

algorithm

GUI testing No input or operation required Objectives, prerequisites and buttons for step-

by-step demonstrations on example graphs

are correctly shown
Passed

Go to the step-by-step

demonstration window

for the example graph

Button testing Click any one of the “Example” buttons

Proceed to the Step-by-Step Demonstration

window for the correct algorithm and on a

correct example graph

Passed

For the tabular version of Module 2.1.1.1 –

Prim’s Algorithm Topic Overview, A correct

table of the example graph are shown

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 156

Module 2.1.*.2 – Step-by-Step Demonstrations

Requirement Description Inputs or Operation Expected Outcome Result

Provide a full algorithm

description, separated by steps

GUI testing No input or operation required Correct algorithm description are shown,

separated by steps
Passed

Show the selected example

graph on the window

GUI testing No input or operation required Correct example graph are shown
Passed

Step forward
Button and GUI

testing

Click “Next” button All demonstrations (both textual and graphical)

are functional
Passed

Illustrations on graph

GUI testing No input or operation required Correct vertices and edges are highlighted in

correspondence with the current state of the

graph on each step

Passed

User operations on graph

Button and GUI

testing

Click on the nodes/edges when required - The "Next" button is disabled until the

operations on graph is done by users

- Correct nodes/edges are recorded to

perform the algorithm in the following steps

- Correct textual explanations are shown in

correspondence to the operations on graph

- Correct nodes/edges are highlighted on the

graph in correspondence to the operations

Passed

For the tabular version of Module

2.1.1.2 – Prim's Algorithm Step-by-Step

Demonstrations, click on the columns/

rows/entries on the table when required

Passed

For Module 2.1.2.2 – Kruskal's

Algorithm Step-by-Step Demonstrations

click on the edges on the ordered list

Passed

Finishing-up

GUI testing No input or operation required - The "Next" button is disabled

- Correct textual explanations and results are

shown, with the graph correctly illustrated

on the final state

Passed

For Module 2.1.3.2 – Dijkstra's

Algorithm Step-by-Step Demonstrations

click on a vertex as the finishing vertex

Correct shortest path are shown on the graph

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 157

Module 2.2 – Task Setting Window (Teacher accounts only)

Requirement Description Inputs or Operation Expected Outcome Result

Create a graph

via adjacency

matrix

Button testing Click "Adjacency Matrix" button

Proceed to the Edit

Adjacency Matrix window Passed

Create a graph

via adjacency list

Button testing Click "Adjacency List" button Proceed to the Edit

Adjacency List window
Passed

Create a graph

via the Sketch

Board

Button testing Click "Sketch Board" button Proceed to the Sketch

Board window Passed

Validation

Attempt to add a

question with no graph

Question name: Test question 0

Description: Test

Graph: [No graph]

Task 1: Find the Minimum Spanning Tree of the graph using

Kruskal's Algorithm

Error message: "Please

enter a graph!"

Passed

Validation

Attempt to add a

question with no subtask

Question name: Test question 1

Description: Test

Graph: [A vaild graph]

Task 1: [Empty]

Error message: "Please

enter at least a task!"
Passed

Question name: Test question 2

Description: Test

Graph: [A vaild graph]

Task 1: [Empty]

Task 2: [Empty]

…

Task 10: [Empty]

Error message: "Please

enter at least a task!"

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 158

Requirement Description Inputs or Operation Expected Outcome Result

Validation

Attempt to add a

question with at least

two repetitive subtasks

Question name: Test question 3

Description: Test

Graph: [A vaild graph]

Task 1: Find the Minimum Spanning Tree of the graph using

Kruskal's Algorithm

Task 2: Find the Minimum Spanning Tree of the graph using

Kruskal's Algorithm

Error message:

"Repeated task content

at task 2!"

Passed

Question name: Test question 4

Description: Test

Graph: [A vaild graph]

Task 1: Find the Minimum Spanning Tree of the graph using Prim's

Algorithm

- Starting vertex: A

Task 2: Write the graph in adjacency matrix representation

Task 3: Find the Minimum Spanning Tree of the graph using Prim's

Algorithm

- Starting vertex: B

Task 4: Find the Minimum Spanning Tree of the graph using Prim's

Algorithm

- Starting vertex: A

Task 5: Write the graph in adjacency matrix representation

Error message:

"Repeated task content

at task 4!"

Error message:

"Repeated task content

at task 5!"

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 159

Requirement Description Inputs or Operation Expected Outcome Result

Validation

Improper task: attempt to

find the Minimum

Spanning Tree for a

directed graph

Question name: Test question 5

Description: Test

Graph: [A vaild directed graph]

Task 1: Find the Minimum Spanning Tree of the graph using

Kruskal's Algorithm

Task 2: Find the Minimum Spanning Tree of the graph using Prim's

Algorithm

- Starting vertex: A

Error message: "Task 1

is improper: Cannot find

a Minimum Spanning

Tree for a directed

graph!"

Error message: "Task 2

is improper: Cannot find

a Minimum Spanning

Tree for a directed

graph!"

Passed

Validation

Improper task: starting/

finishing vertex not

stated in the subtask

when required

Question name: Test question 6

Description: Test

Graph: [A vaild graph]

Task 1: Find the Minimum Spanning Tree of the graph using Prim's

Algorithm

- Starting vertex: [Empty]

Task 2: Find the Shortest Path using Dijkstra's Algorithm

- Starting vertex: A

- Finishing vertex: [Empty]

Task 3: Find the Shortest Path using Dijkstra's Algorithm

- Starting vertex: [Empty]

- Finishing vertex: [Empty]

Error message: "Task 1

is improper: Starting

vertex is empty!"

Error message: "Task 2

is improper: Finishing

vertex is empty!"

Error message: "Task 3

is improper: Starting

vertex is empty!"

Error message: "Task 3

is improper: Finishing

vertex is empty!"

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 160

Requirement Description Inputs or Operation Expected Outcome Result

Validation

Improper task: starting/

finishing vertex not exist

in the graph

Question name: Test question 7

Description: Test

Graph: [A vaild graph containing vertices A, B, C, D, E]

Task 1: Find the Minimum Spanning Tree of the graph using Prim's

Algorithm

- Starting vertex: W

Task 2: Find the Shortest Path using Dijkstra's Algorithm

- Starting vertex: A

- Finishing vertex: X

Task 3: Find the Shortest Path using Dijkstra's Algorithm

- Starting vertex: Y

- Finishing vertex: Z

Error message: "Task 1

is improper: Starting

vertex does not exist in

the graph!"

Error message: "Task 2

is improper: Finishing

vertex does not exist in

the graph!"

Error message: "Task 3

is improper: Starting

vertex does not exist in

the graph!"

Error message: "Task 3

is improper: Finishing

vertex does not exist in

the graph!"

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 161

Requirement Description Inputs or Operation Expected Outcome Result

Validation

A combination of all the

errors above

Question name: Test question 8

Description: Test

Graph: [A vaild directed graph containing vertices A, B, C, D, E]

Task 1: Find the Minimum Spanning Tree of the graph using Prim's

Algorithm

- Starting vertex: [Empty]

Task 2: Find the Minimum Spanning Tree of the graph using

Kruskal's Algorithm

Task 3: Find the Shortest Path using Dijkstra's Algorithm

- Starting vertex: X

- Finishing vertex: Y

Task 4: Write the graph in adjacency matrix representation

Task 5: Write the graph in adjacency matrix representation

Error message: "Task 1

is improper: Cannot find

a Minimum Spanning

Tree for a directed

graph!"

Error message: "Task 1

is improper: Starting

vertex is empty!"

Error message: "Task 2

is improper: Cannot find

a Minimum Spanning

Tree for a directed

graph!"

Error message: "Task 3

is improper: Starting

vertex does not exist in

the graph!"

Error message: "Task 3

is improper: Finishing

vertex does not exist in

the graph!"

Error message:

"Repeated task content

at task 5!"

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 162

Requirement Description Inputs or Operation Expected Outcome Result

Validation

Correct task setting

(normal)

Question name: Test question 9|10|11

Description: Test

Graph: [A vaild graph from Adjacency Matrix|Adjacency List|Sketch

Board]

Task 1: Find the Minimum Spanning Tree of the graph using Prim's

Algorithm

- Starting vertex: A

Task 2: Find the Minimum Spanning Tree of the graph using

Kruskal's Algorithm

Task 3: Find the Shortest Path using Dijkstra's Algorithm

- Starting vertex: B

- Finishing vertex: C

Task 4: Find the Shortest Path using Dijkstra's Algorithm

- Starting vertex: B

- Finishing vertex: D

Task 5: Find the Shortest Path using Dijkstra's Algorithm

- Starting vertex: C

- Finishing vertex: D

Task 6: Draw the graph corresponding to the adjacency list/matrix

representation

Task 7: Write the graph in adjacency matrix representation

Task 8: Write the graph in adjacency list representation

No error message

displayed

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 163

Requirement Description Inputs or Operation Expected Outcome Result

Validation

Correct task setting

(Question name, or

description, or both are

empty)

Question name: [Empty]

Description: Test

Graph: [A vaild graph]

Task 1: Write the graph in adjacency matrix representation

No error message

displayed

Unnamed question is

saved with a system

default name in the

format of "New Question

+ [Current date/time]"

Description is allowed

empty

Passed

Question name: Test question 12

Description: [Empty]

Graph: [A vaild graph]

Task 1: Write the graph in adjacency matrix representation

Passed

Question name: [Empty]

Description: [Empty]

Graph: [A vaild graph]

Task 1: Write the graph in adjacency matrix representation

Passed

Validation

Correct task setting

(Some of the input boxes

for tasks are empty but

at least one is valid)

Question name: Test question 13

Description: [Empty]

Graph: [A vaild graph]

Task 1-5: [Empty]

Task 6: Write the graph in adjacency matrix representation

Task 7-10: [Empty]

No error message

displayed

All the input boxes for

empty tasks are removed

Passed

Validation

Correct task setting

(SQL attempts)

Question name: dummy', 'dummy');

Description: DROP TABLE QUESTIONBANK;--

Graph: [A vaild graph]

Task 1: Write the graph in adjacency matrix representation

No error message

displayed

SQL injection commands

are regarded as string

parameters

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 164

Requirement Description Inputs or Operation Expected Outcome Result

Validation

Correct task setting

(Very long question

name and description)

Question name: Test question 14 #######...

(Until maximum character limit (140 characters) is reached)

Description: TestTestTest…

(Until maximum character limit (1500 characters) is reached)

Graph: [A vaild graph]

Task 1: Write the graph in adjacency matrix representation

No error message

displayed

Passed

Validation

Correct task setting

(Dense graph)

Question name: Test question 15|16|17

Description: Test

Graph: [A vaild dense graph from Adjacency Matrix|Adjacency

List|Sketch Board]

Task 1: Find the Shortest Path using Dijkstra's Algorithm

- Starting vertex: A

- Finishing vertex: Z

No error message

displayed

Passed

Save the

question

Database testing No input or operation required Problem descriptions,

graphs and subtasks are

correctly saved in the

database

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 165

Module 2.2.1 – Edit Adjacency Matrix

Requirement Description Inputs or Operation Expected Outcome Result

Validation

Attempt to enter a invalid

weight

Edge BC: InvalidData

Edge DA: -123.4

Error message:

"Invalid input at row: B,

column: C!"

Error message:

"Negative weight at row:

D, column: A!"

Passed
Attempt to enter a

negative weight

Validation
Correct inputs [Correct weight entries] No error message

displayed
Passed

Save the graph

Button and GUI testing With correct inputs, click "Submit" button Proceed to the Task

Setting window, with the

adjacency matrix

correctly shown

Passed

Module 2.2.2 – Edit Adjacency List

Requirement Description Inputs or Operation Expected Outcome Result

Validation

Attempt to enter a invalid

string

Adjacent Edges of A: InvalidData

Adjacent Edges of B: A,1.5,C,D,2.5,2,E,0.5

Adjacent Edges of C: A,B,2,C,3,D,4

Adjacent Edges of D: A,-123.4

Error message:

"Invalid input at vertex A!"

Error message:

"Invalid input at vertex B!"

Error message:

"Self loop at vertex C!"

Error message:

"Negative edge weight at

edge DA!"

Passed

Attempt to enter a weight

without a preceding

vertex name

Attempt to create a self

loop

Attempt to enter a

negative weight

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 166

Requirement Description Inputs or Operation Expected Outcome Result

Validation
Correct inputs [Correct weight entries] No error message

displayed
Passed

Save the graph

Button and GUI testing With correct inputs, click "Submit" button Proceed to the Task

Setting window, with the

adjacency list correctly

shown

Passed

Module 2.2.3 – Sketch Board

Requirement Description Inputs or Operation Expected Outcome Result

Create a vertex
Button and GUI testing Click on the "Vertex" button, then single click on the

Sketch Board panel (Normal)

A new vertex with default vertex name

is created on the single click position
Passed

Create a vertex

Button and GUI testing Click on the "Vertex" button, create 26 vertices on the

Sketch Board panel, and then attempt to create

another new vertex by single clicking on the Sketch

Board panel (Erroneous)

Message box displayed:

"Maximum number of vertices has

been reached! (You can create up to

26 vertices)"

Passed

Create an edge

Button and GUI testing Click on the "Edge" button, single click on a vertex on

the Sketch Board panel, and then single click on

another vertex on the Sketch Board panel (Normal)

An undirected edge with weight 1

between the two clicked vertices is

drawn on the Sketch Board panel

Passed

Create an edge

Button and GUI testing Click on the "Edge" button, single click on a vertex on

the Sketch Board panel, and then single click on a

blank place on the Sketch Board panel (the number of

vertices does not exceed the maximum limit) (Normal)

A new vertex with default vertex name

is created on the single click position;

An undirected edge with weight 1

between the clicked vertex and the

newly created vertex is drawn on the

Sketch Board panel

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 167

Requirement Description Inputs or Operation Expected Outcome Result

Create an edge

Button and GUI testing Click on the "Edge" button, single click on a vertex on

the Sketch Board panel, and then single click on a

blank place on the Sketch Board panel (the number of

vertices is already at the maximum limit) (Erroneous)

Message box displayed: "Maximum

number of vertices has been reached!

(You can create up to 26 vertices)";

No new edge is created

Passed

Create an edge

Button and GUI testing Click on the "Edge" button, single click on a blank place

on the Sketch Board panel, and then single click on a

vertex on the Sketch Board panel (Normal)

A new vertex with default vertex name

is created on the single click position;

An undirected edge with weight 1

between the newly created vertex and

the clicked vertex is drawn on the

Sketch Board panel

Passed

Create an edge

Button and GUI testing Long press the "Edge" button, wait for the "Directed

edge" button and the "Undirected edge" button to

appear, click on the "Directed edge button", then repeat

the previous 4 "Create an edge" testing operations

The "Directed edge" button (shown

as ↗) and the "Undirected edge"

button (shown as ╱) are shown

successfully, and disappear after

one of them is clicked;

Passed

A directed edge with weight 1 from the

first clicked vertex to the second

clicked vertex is drawn on the Sketch

Board panel in all the above 4 "Create

an edge" testing operations

Passed

Edit a vertex
Button and GUI testing Click on the "Vertex" button, and attempt to drag a

vertex (Normal)

The vertex is successfully dragged,

along with all its connecting edges
Passed

Edit a vertex

Button and GUI testing Click on the "Tag" button, and double click on a vertex

(Normal)

A vertex tag window with the name of

the vertex and its connecting edges is

shown

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 168

Requirement Description Inputs or Operation Expected Outcome Result

Edit a

vertex/edge

Attempt to enter an

invalid name for the

vertex

On the vertex tag window:

enter vertex name: "@"

Error message "Invalid name!"

Passed

Edit a

vertex/edge

Attempt to enter a valid

name for the vertex

On the vertex tag window:

enter vertex name: [A valid vertex name different from

the original vertex name]

No error message is shown

The vertex tag window is closed, and

the name of the vertex is changed on

the Sketch Board panel

Passed

Edit a

vertex/edge

Attempt to change the

weight of an already

existing edge

On the vertex tag window:

Change the weight of an already existing edge

(Normal)

The weight of the edge is changed in

one direction from this vertex to the

destination vertex
Passed

Edit a

vertex/edge

Button and GUI testing On the vertex tag window:

Uncheck an edge (Normal)

The edge is removed in one direction

from this vertex to the destination

vertex

Passed

Edit a

vertex/edge

Attempt to create a new

directed edge from the

vertex

On the vertex tag window:

Check a destination vertex where there does not exist

an edge from this vertex to the destination vertex, and

set a weight for the edge (Normal)

A new directed edge with the

specified weight is formed from this

vertex to the destination vertex Passed

Edit a

vertex/edge

On the vertex tag window:

Check a destination vertex where there does not exist

an edge from this vertex to the destination vertex, and

leave the weight for the edge blank (Erroneous)

Error message "Invalid input for

weight XY: Please input a positive

real number!"

NB X represents the current vertex,

and Y represents the destination

vertex

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 169

Requirement Description Inputs or Operation Expected Outcome Result

Edit a

vertex/edge

Attempt to create a new

directed edge from the

vertex

(cont.)

On the vertex tag window:

Check a destination vertex where there does not exist

an edge from this vertex to the destination vertex, and

enter an invalid string in the weight textbox (Erroneous)

Error message "Invalid input for

weight XY: Please input a positive

real number!"

NB X represents the current vertex,

and Y represents the destination

vertex

Passed

Edit a

vertex/edge

On the vertex tag window:

Check a destination vertex where there does not exist

an edge from this vertex to the destination vertex, and

set a negative weight for the edge (Erroneous)

Error message "Invalid input for

weight XY: Please input a positive

real number!"

NB X represents the current vertex,

and Y represents the destination

vertex

Passed

Edit a

vertex/edge

On the vertex tag window:

Check a destination vertex where there does not exist

an edge from this vertex to the destination vertex, and

enter 0 for the weight of the edge (Extreme erroneous)

Error message "Invalid input for

weight XY: Please input a positive

real number!"

NB X represents the current vertex,

and Y represents the destination

vertex

Passed

Clear the panel
Button and GUI testing Click the "Clear" button

The Sketch Board panel is cleared
Passed

Save the graph

Button and GUI testing Click the "Submit" button Proceed to the Task Setting window,

with the graph image correctly shown

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 170

Module 2.3 – Question Bank Section: List of Questions

Module 2.3.1 – Add Questions

Module 2.3.2 – Edit Questions

Module 2.3.3 – Delete Questions

Requirement Description Inputs or Operation Expected Outcome Result

Query the

questions from

the database

Database and GUI

testing

No operation needed The list correctly shows the question name and

date modified of all the questions, consistent to

the value stored in the QUESTIONBANK table

in the database

Passed

Sort the

questions

GUI testing Click on the column headers The questions are sorted in ascending or

decending order with respect to data modified

or question name

Passed

Add questions
Button and GUI testing Requires teacher account

Click the "Add Question" button

A new Task Setting window is shown

Passed

Add questions

Database and GUI

testing

Requires teacher account

After the new question is edited (validatation

is also passed), click the "Submit" button on

the Task Setting window

The questions, graphs, subtasks are stored in

the database in the correct tables;
Passed

The answer to each subtask are correctly

calculated and saved in the database;
Passed

Go back to the List of Questions window, with

the newly added question shown on the list.
Passed

Edit questions

Button, GUI and

database testing

Requires teacher account

Select a question from the list, then click the

"Edit Question" button

A Task Setting window is shown with the

current contents of the question loaded

correctly in place, consistent to the value

stored in the database.

Passed

Requires teacher account

Double click on a question from the list

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 171

Requirement Description Inputs or Operation Expected Outcome Result

Edit questions

Database and GUI

testing

Requires teacher account

After the question is edited (validatation is

also passed), click the "Submit" button on the

Task Setting window

The questions, graphs, subtasks are updated

in the database in the correct tables;
Passed

The answer to each subtask are correctly

calculated and saved in the database;
Passed

Go back to the List of Questions window, with

the information of the edited question updated

on the list.

Passed

Delete questions

Button, GUI and

database testing

Requires teacher account

Select a question from the list, then click the

"Delete Question" button

The questions, graphs, subtasks and answers

are correctly deleted from the database;
Passed

The deleted question is also removed from the

list of questions.
Passed

Proceed to the

Do Question

window

Button and GUI testing Select a question from the list, then click the

"Do Question" button

Proceed to the Do Question window

Passed
On a student account:

double click on a question from the list

Module 2.3.4 – Do Questions

Module 2.3.4.1 – Mark Questions

Requirement Description Inputs or Operation Expected Outcome Result

Query the

content of the

question

Database and GUI

testing

No operation needed The Do Question window correctly shows the

question name, problem description, graph,

and subtasks of the selected questions,

consistent to the data stored in the database

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 172

Requirement Description Inputs or Operation Expected Outcome Result

Do questions

Attempt to enter a graph

in adjacency matrix as

required

(Button and GUI testing)

1. Click the "Adjacency Matrix" button A new Edit Adjacency Matrix window is shown. Passed

2. Enter several valid entries in the Edit

Adjacency Matrix window, then click the

"Save" button

Go back to the Do Question window.

Passed

3. Click the same "Adjacency Matrix" button

again

The Edit Adjacency Matrix window is shown,

along with the correct previous workings.
Passed

Do questions

Attempt to enter a graph

in adjacency list as

required

(Button and GUI testing)

1. Click the "Adjacency List" button A new Edit Adjacency List window is shown. Passed

2. Enter several valid entries in the Edit

Adjacency List window, then click the

"Save" button

Go back to the Do Question window.

Passed

3. Click the same "Adjacency List" button

again

The Edit Adjacency List window is shown,

along with the correct previous workings.
Passed

Do questions

Attempt to draw a graph

using the Sketch Board

as required

1. Click the "Sketch Board" button A new Sketch Board window is shown. Passed

2. On the Sketch Board window, click the

"View Task" button

A temporary readonly window of the task graph

in the correct representation format is shown
Passed

3. Draw a valid graph on the Sketch Board

window, then click the "Submit" button

Go back to the Do Question window.
Passed

Mark the

question

Button and GUI testing Click the "Mark it!" button with the presence of

both correct answers and wrong answers

Correct answers are marked with green √, and

wrong answers are marked with red ×
Passed

Total marks given are correctly shown in the

"Your score" label, in red
Passed

Click the "Mark it!" button with all answers

correct

Full marks are correctly shown in the "Your

score" label, in green Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 173

Requirement Description Inputs or Operation Expected Outcome Result

Show answer

Button, GUI and

database testing

Click the "Answer" button for a subtask with

numerical answer

Correct answer value is shown, consistent to

the values stored in the database
Passed

The "Answer" button is now named "Hide" Passed

For the correctly attempted subtasks, the

answer labels are green, and for the incorrectly

attempted subtasks, the answer labels are red

Passed

Show answer

Button, GUI and

database testing

Click the "Answer" button for a subtask with

graphical answer in adjacency matrix

A readonly Adjacency Matrix window is shown,

with the correct entries of the answer matrix,

consistent to the values stored in the database

Passed

Show answer

Button, GUI and

database testing

Click the "Answer" button for a subtask with

graphical answer in adjacency list

A readonly Adjacency List window is shown,

with the correct entries of the answer list,

consistent to the values stored in the database

Passed

Hide answer
Button and GUI testing Click the "Hide" button for a subtask with

numerical answer

The label of answer value is hidden;

The "Hide" button is now named "Answer".
Passed

Hide answer
Button and GUI testing Close the readonly Adjacency Matrix/List

window

Go back to the Do Question window.
Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 174

Module 3 – User Accounts

Module 3.1 – Account Setting

Module 3.2 – Quit

Requirement Description Inputs or Operation Expected Outcome Result

Show account

operation

buttons

Button and GUI testing Click the button on the User Account menu A "Settings" button and a "Quit" button is

shown;

The button now becomes .

Passed

Hide account

operation

buttons

Button and GUI testing Click the button on the User Account menu The "Settings" and "Quit" buttons are hidden;

The button now becomes .
Passed

Query the

account

information

Button, database and

GUI testing

Click the button on the User Account menu,

then click the "Settings" button

A Sign up window is shown, along with the

correct account information of the current

account loaded in place, consistent to the

value stored in the database

Passed

Update account

information

Button, database and

GUI testing

After the account information is edited (validation

is also passed), click the "Submit" button

The account information is updated correctly

in the database;
Passed

Go back to the previous window where the

Account Setting request is called.
Passed

Quit the system

Button and GUI testing Click the button on the User Account menu,

then click the "Quit" button

Quit the entire system.

Passed

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 175

Evaluation

Feedbacks from users

The final version of the system has been tested by the following users:

- Mr John Cowley (JHC): Head of Mathematics Department of Ellesmere College;

- Mr Peter Hayes (PJH): Teacher of Mathematics of Ellesmere College, in charge of teaching

Decision 1 for A-Level further mathematics students;

- Mr Thomas Hurst (TDH): Teacher of Design and Technology of Ellesmere College.

Feedback emails from the above mentioned users have been obtained and analysed:

Mr John Cowley

Feedback from JHC is copied below:

(Please refer to Appendix 4 - Original feedback emails from users.pdf for the original email)

Victor,

The programs now work ok.

As a learner I would still appreciate the opportunity to go back a step to consolidate my learning. Your

program only allows me to go forwards through it.

I know I can reload the tool and start again which is useful but a little time-consuming.

JHC

Suggestion Comments Analysis

Enable stepping backwards in

Step-by-Step Demonstration

This is possible to be

implemented

The naïve implementation of this functionality

may require temporarily storing the details of

the algorithm and front-end GUI states for

every step, so efficiency will be a challenge to

overcome.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 176

Mr Peter Hayes

Feedback from PJH is copied below:

(Please refer to Appendix 4 - Original feedback emails from users.pdf for the original email and

attachment)

Victor – graph teaching app

Sign-up

- Date of birth only moves month by month

- When it came to log-in a different user name appeared and invalid name error came up

Teaching section

- Titles in boxes very small font – rather uninteresting page

Prim’s

-

No explanation of these objectives before starting examples so I do not know what a minimum

spanning tree is

-

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 177

Would prefer a box to choose

-

Better to have only one step showing – otherwise learner may not bother to read.

-

If I do not know what a minimum spanning tree is how do I know I need to return to step 2?

-

Explain why 6 edges tells me the minimum spanning tree is formed.

Better to end by drawing a separate diagram with minimum spanning tree only.

Tabular version

-

Again too much at once.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 178

Step 4 – difficult to understand – where are I, j, defined?

- Found it difficult to choose vertex

-

The chosen value goes bold and remains uncircled!

-

Why can’t I choose an edge on the graph? Not easy to find in table for new learner.

-

Algorithm complete – no circled values.

- Font size again very small. I would prefer to see values centred in box and line crossing out values

to be longer.

Kruskal's

-

I would prefer to click on graph or even to have a choice.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 179

Dijkstra’s

-

Too much information at once.

-

Need to explain meaning of these numbers.

-

Too fast – do one at a time.

- “smallest best” - ? English

- Graph keeps flashing when Next is pressed.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 180

-

I chose vertex G which is not very interesting. There seems to be no way to go back and choose

a different vertex.

- “trace back” method needs to be explained.

Suggestion Comments Analysis

Date of birth only moves month

by month

This relate to the intuitiveness of

the project, and is possible to be

implemented

Actually the users can click on

the header of the calendar to go

to the years, decades and

centuries. However, due to lack

of instruction, users cannot

know that instinctively.

This can be solved by enabling

the users to type in the date of

birth textbox. Validation is

required to ensure that the

syntax of the date of birth is

correct.

When it came to log-in a

different user name appeared

and invalid name error came up

This relate to the detail of the

project, and is easy to be

implemented

Every time the system goes

back to the log-in window, the

contents in the username

textbox and the password

textbox should be cleared.

Titles in boxes with small font,

and the page is uninteresting

This relates to the GUI design of

the project, and is easy to be

implemented

Increase the font size of the

text, and add aesthetic design to

the pages.

No explanation of these

objectives before starting

examples

This relates to the explanation

of the teaching tool, and is easy

to be implemented

Add explanation to the

objectives (for example, define

the minimum spanning tree in

the objectives)

Prefer a box to choose to go

back to the upper-level window

This is easy to be implemented Add a "Return to previous page"

button that closes this window

when clicked, so it will trigger

the same event of closing the

window, and go back to the

upper-level window.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 181

Suggestion Comments Analysis

To much content at once

Better to have only one step

showing – otherwise learner

may not bother to read

This is easy to be implemented Extend the steps before starting

the Step-by-Step Demonstration

of the algorithm, in the way that

when the users click the "Next"

button, only one more step is

shown on the system, until all

steps have been shown.

Better to end by drawing a

separate diagram with minimum

spanning tree only.

This relates to the GUI design of

the project, and is possible to be

implemented

When the minimum spanning

tree algorithm is finished, add

another panel to the Step-by-

Step Demonstration window to

show the minimum spanning

tree only.

Step 4 in Prim's algorithm

(tabular version): i, j are not

defined

This relates to the explanation

of the teaching tool, and is easy

to be implemented

Define i, j in Step 4.

In Prim's algorithm (tabular

version) and Kruskal's algorithm:

cannot choose an edge on the

graph – Not easy to find in table

for new learner

This is possible to be

implemented

Add events to the edges on the

graph so that users can choose

an edge on the graph. This

would be the same event in

Prim's algorithm (graphical

version).

In Prim's algorithm (tabular

version): the chosen value goes

bold and remains uncircled

This relates to the GUI design of

the project, and is hard to be

implemented

Making the chosen value bold is

a compensation to the GUI as

there isn’t a way to circle the

label. This is definitely possible

to be implemented, but will have

to seek other approach to circle

the values.

Need to explain the meanings of

the permanent label and the

temporary label in Dijkstra's

algorithm

This relates to the explanation

of the teaching tool, and is easy

to be implemented

Explain the manings of the

pamernent label and the

temporary label in the steps.

In Dijkstra's algorithm,

temporary labels of multiple

vertices are updated too fast

This is easy to be implemented When the users click the "Next"

button, the temporary labels of

vertices are updated one at a

time.

English wording problem in

Dijkstra's algorithm: "smallest

best"

The wording is adapted from the

reformed linear A-Level

mathematics formula booklet

It is easy to be altered

Change the wording.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 182

Suggestion Comments Analysis

In Dijkstra's algorithm: graph

keeps flashing when the "Next"

button is pressed

This is due to the entire graph is

redrawn when the "Next" button

is clicked. It is possible to

optimise the processing

When the "Next" button is

clicked, only redrawn the

affected edges.

In Dijkstra's algorithm: there

seems to be no way to go back

and choose a different vertex

This relate to the intuitiveness of

the project, and is easy to be

implemented

Actually the users can just click

on another vertex on the graph

to choose a different vertex.

However, the hint "You can click

on other vertices to see their

shortest routes and distances" is

not obvious enough to be seen

immediately.

This can be solved by making the

hint more obvious.

In Dijkstra's algorithm: “Trace

back” method needs to be

explained

This relates to the explanation

of the teaching tool, and is easy

to be implemented

Explain the "trace back" method

in the steps.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 183

Mr Thomas Hurst

Feedback from TDH is copied below:

(Please refer to Appendix 4 - Original feedback emails from users.pdf for the original email and

attachment)

- Ability to simply type in Date of Birth rather than have to use the calendar function to either scroll

back month by month or move up levels through years and then decades to find the right date.

- The only way to close the calendar on the date field is to press the X button. Clicking on the next

field or using tab to move through the fields works but the calendar still obscures the next field

- Not sure if it is due to the resolution on my laptop but any new window sits off centre of the screen

for some reason.

-

It would be good to have both forward and backwards buttons to navigate between the examples

of graphical and tabular methods.

- Seems to have scaling issues of the images

There is no way I can see vertex G on the map.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 184

It is even worse on example 2

The question bank and a number of other frames as shown in the images above obscure the user

name.

- From a design/educational point of view the overall programme looks very dull and dreary, I am

not sure what your objectives were at the outset but I think that the aesthetic needs to be worked

on to make it suitable for a teaching tool.

Suggestion Comments Analysis

Enable simply typing in date of

birth

This is possible to be

implemented

Validation is required to ensure

that the syntax of the date of

birth is correct.

Calendar obscuring the next

fields

This relates to the GUI design of

the project, and is easy to be

implemented

When the users click on the

textboxes of the obscured fields,

the calendar can be send to the

back so that the textboxes of the

fields are shown.

Any new window sits off centre

of the screen

This is not a problem as all the

new windows are deliberately

set to be located on the centre

of the screen.

No further action needed.

Have both forward and

backwards buttons in the Step-

by-Step Demonstrations

This is possible to be

implemented

The naïve implementation of

this functionality may require

temporarily storing the details of

the algorithm and front-end GUI

states for every step, so

efficiency will be a challenge to

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 185

Suggestion Comments Analysis

overcome.

Scaling issues of the images The reason of this is most likely

to be the resolution of TDH's

laptop, as this has never

happened on any of the other

testing machines

No further action needed for this

specific case.

In the future if the system are to

be created full screen or online,

automatic scaling will be

required to avoid such issues.

Aesthetic design This relates to the GUI design of

the project, and is possible to be

implemented

Add aesthetic design to the

pages.

Need to be mindful that the

aesthetic design should not be

distractive.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 186

Possible extensions

The functionalities of this system can be extended, including but not limited to the following:

1. Create an Administrator module for an administrator to manipulate (i.e., add/edit/delete) the user

accounts and Question Bank data directly through the front-end, without the need of speciality in

database operations for the administrator.

This would take up to 1 month to be fully implemented. Only one more module of code (approximately

10% of the entire code) needs to be written.

2. An "Exam Board" attribute can be added to the questions, and can be used to catagorise or filter out

the questions in the Question Bank.

This would require only little programming work, and would expect to take up to 2 weeks to be fully

implemented. However, population of the question data from various exam boards to the database will

require a lot of time and repetitive work.

3. A Graph Generator module can be added, which can generate a graph visually based on the number

of vertices and edges given (subjected to the maximum limit), or the same graph in adjacency matrix

or adjacency list represenations. This module can be used in:

- The automatic generation of visual graph to an adjacency matrix/list

- Randomly generate a suitable graph and perform Step-by-Step Demonstration on it

This would take approximately 3-4 months to be fully implemented, and approximately 30%-50% more

code needs to be written. The implementation of this module would require complex optimisation

algorithms for graphics and space arranging.

4. Currently the example graphs for the Step-by-Step Demonstrations are hard-coded, and the system

should enable Step-by-Step Demonstrations on user-designed graphs (through the Sketch Board).

This would take approximately 2-3 months to be fully implemented, and approximately 20%-40% more

code needs to be written. The implementation of this functionality should set limit to the scales, features

of graphs, and the numbers of vertices/edges, for the user-designed graphs.

5. Currently the workings on the Sketch Board can only be saved as a PNG file, and the system should

enable the graph drawn on the Sketch Board to be dynamically saved so that users can continue

working later.

This would take approximately 3 months to be fully implemented, and approximately 30%-40% more

code needs to be written. The naïve implementation of this functionality may require saving all the

details (such as location) of every vertices and edges as temporary objects, and the efficiency is a

challenge to overcome.

6. Currently in the Do Questions module, when the users edit the adjacency matrices/lists for the

subtasks, the Edit Adjacency Matrix/List windows take up the full size of the system that obscure the

question page, and users have to save their workings and close the Edit Adjacency Matrix/List windows

to go back and see the questions. The system should enable the users to see the questions at the

same time when they edit the adjacency matrices/lists.

This would take approximately 3-4 months to be fully implemented, and approximately 30%-50% more

code needs to be written. The implementation of this functionality would require redesigning of the Edit

Adjacency Matrix/List windows for the Do Questions module.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 187

7. New graph algorithms, such as finding the Hamiltonian cycle, can be added to this project. This would

take approximately 2-3 months to be fully implemented, and approximately 25%-30% more code needs

to be written.

8. A Student Tracking System can be added to the system to track individual student's progress on each

topic. This includes:

- Visualising the history of attempts of a student on each question

- Visualising the progress of a student for each chapter

- A League Table for the teachers to get visualised access to all their students based on their

progresses on each chapter

This would take approximately 5-6 months to be fully implemented, and approximately 60%-70% more

code needs to be written. The implementation of this system would require:

- Redesigning of the current database structures

- Complex algorithms to quantify and calculate the progress

- Complex dynamic GUI designing

9. The entire system can be put online:

- The database can be updated online based on a server;

- Users can have access to the system with their data updated at anywhere with Internet access.

This would take approximately 8-10 months to be fully implemented, and approximately 80% to more

than 100% more code needs to be written. The implementation of the online system would require at

least:

- Rewriting the code for most of the modules to make them online-supporting

- Adding new modules for online client-server actions

- Redesigning the GUIs to make them fit in the webpage

- Adding server-side extensions for manipulating the data from the database

- Solve the potential risks of concurrency issues

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 188

Client meeting log

NB People involved in the client meeting log:

- Mr John Cowley (JHC): Head of Mathematics Department of Ellesmere College;

- Mr Peter Hayes (PJH): Teacher of Mathematics of Ellesmere College, in charge of teaching Decision 1 for A-Level further mathematics students;

- Dr Sarah Shakibi (HSS): Head of Computer Science Department and Teacher of Mathematics of Ellesmere College;

- Mr Thomas Hurst (TDH): Teacher of Design and Technology of Ellesmere College.

Date People involved Points discussed Actions to be taken

June 2017 JHC Please refer to the record of interviews above

June 2017 PJH Please refer to the record of interviews above

June 2017 HSS Please refer to the record of interviews above

13 September 2017 HSS

The Sketch Board (Module 2.2.3) is presented:

- Vertex, Edge and Tag buttons are all

functional.

HSS would very much prefer to see the following

functionality to be created as soon as possible:

- Teachers/learners will be able to produce new

tasks/questions by creating an adjacency

matrix, an adjacency list or a graph;

- The two different options of adjacent matrix

and list should also appear as buttons on the

interface, so that students can get equal

practice with both.

Work on the remaining functionalities.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 189

Date People involved Points discussed Actions to be taken

10 October 2017 HSS

The updated Sketch Board (Module 2.2.3) and Task

Setting Section (Module 2.2) are presented:

- The Sketch Board:

the creation/deletion/renaming of vertices, the

creation of edge, and the clear button are all

functional.

- Remaining functionality on the Sketch Board:

edge properties (directions and weights) and

the save change functionalities. Currently, the

active window sketch is ‘saved’ as hard code,

and will be overwritten if another sketch

follows. The envisaged destination for the

submitted sketch will be the back-end

database in 2 formats: adjacency matrix and

PNG image.

- The Task Setting Section: adding tasks is

semi-functional: currently teachers can add,

edit, or remove a task from the active window,

but the set tasks are not stored in the back-

end database (this will be fixed when the

Question Bank database is completed.)

Work on the remaining functionalities.

Structure of tables in the database should be

designed on paper and sent to HSS as soon as

possible.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 190

Date People involved Points discussed Actions to be taken

10 October 2017 HSS

HSS suggests:

- Teacher should be able to see (via queries) a

full list of tasks that have been created, and

these should be fully editable by teacher later;

- The Login window is required, with hashing of

passwords;

- The creation of adjacency lists/matrices can

be done using Microsoft Excel and then be

exported to the system;

- A robust back-end database is now very much

in need.

30 October 2017 HSS

The Login window (Module 0), the Sign up window

(Module 1), the design of database structure and its

DDL are presented:

- The Login window with hashing of passwords

is now complete, but it needs testing that the

data from the front end is read correctly into

the back end.

- The DDL for Accounts database is complete:

1) The functionality of the Foreign Keys as

well as ‘clean’ data entry into the tables

needs testing;

2) Cross-table queries and population of

tables needs testing.

Work on the remaining functionalities.

Ensure that all the tables have been populated with

‘dummy’ data, in order to show a full working

demonstration for the system:

- Two working student logins

- Two working teacher logins

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 191

Date People involved Points discussed Actions to be taken

30 October 2017 HSS

HSS suggests:

- For the Accounts and Question Bank

databases (mutually independent), create two

disjoint subsets within the same database,

rather than two separate databases.

- Population of the tables is now crucially

important.

14 November 2017 HSS

The working demonstrations for student/teacher

logins, sign ups and account settings, and the

finalised design of the database are presented: all

successful.

Work on the remaining functionalities.

The Question Bank Section (Module 2.3) should be

completed as soon as possible.

Create a sample question which is quite basic in

structure, but utilises the functionality of the tables

in the database to test if it works.

6 December 2017 HSS

The finalised Task Setting Section (Module 2.2) and

Question Bank Section (Module 2.3) are presented:

- The edition of a graph in the form of adjacency

matrix/list are both functional, with full

validation.

- Questions and corresponding graphs can be

successfully written into or read from the back-

end database, with full validation.

Progress so far:

User accounts: completed

This includes:

- Login, Sign up, and Log out

- Account settings

- Communications between the front-end

system and the back-end database

- Validation

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 192

Date People involved Points discussed Actions to be taken

6 December 2017 HSS

- Users are able to see (via queries) a full list of

tasks that have been created in the Question

Bank section.

- Teachers are able to add a new question into

the Question Bank Section, and can also edit

or delete an existing question in the Question

Bank Section.

- Remaining functionalities of the Question Bank

Section: Do Question window and marking the

input answers.

Teaching section: to be completed

- The graph algorithms are ready

- The step-by-step demonstrations of those

algorithms are not yet implemented

Task setting section: completed.

This includes:

- Creating a graph via adjacency matrix,

adjacency list, or the Sketch Board

- Adding, editing, or deleting a question

corresponding to the graph

- Communications between the front-end

system and the back-end database

- Validation

Question Bank: to be completed

- Listing all the questions in the Question Bank:

completed

- Adding, editing, or deleting a question in the

Question Bank: completed

- Communications between the front-end

system and the back-end database: completed

- Validation: completed

- Do Questions window and marking the input

answers: not yet implemented

Deadlines for all implementation to be completed:

8 January 2018

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 193

Date People involved Points discussed Actions to be taken

8 January 2018 HSS

All implementation has been completed.

Bugs found in the following modules:

- Module 1 – Sign up: Sign up request passed

even when a date of birth from the future is

entered

- Module 1 – Sign up: Sign up request passed

even when an invalid syntaxed email address

is entered

- Module 1 – Sign up: Sign up request rejected

when firstly sign up with a username, change

it, and then change other account settings (It

outputs "This username has already been

taken!")

- Module 2.2 – Task Setting: System crashes

when the problem description is too long

- Module 2.3 – Question Bank: System crashes

when there is no question in the question bank

and the "Do Question" button is clicked

Fix the bugs as soon as possible

19 March 2018 JHC

Completed project is presented to JHC for testing.

Errors found in Module 2.1.2.2 – Krukskal's

Algorithm Step-by-Step Demonstration: For

example it said "BD and BD have the same weight"

whereas it should have said AC and BC.

There are also issues due to lack of explanation in

various areas.

Fix the bugs and add explanations as soon as

possible, and send the finalised project to the

users.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 194

Date People involved Points discussed Actions to be taken

19 March 2018 TDH
Finalised project is presented to TDH for testing.

Feedback email from TDH is received.

Analyse the suggestions made in TDH's feedback.

20 March 2018 JHC Finalised project is presented to JHC for testing. Wait for JHC's reply email for feedback.

21 March 2018 PJH Finalised project is presented to PJH for testing. Wait for PJH's reply email for feedback.

22 March 2018 JHC Feedback email from JHC is received. Analyse the suggestions made in JHC's feedback.

22 March 2018 PJH Feedback email from PJH is received. Analyse the suggestions made in PJH's feedback.

Centre Number Candidate Name Candidate Number

 29065 Xiangyu Zhao 6960

AQA A-LEVEL COMPUTER SCIENCE Non-Exam Assessment 195

References

[1] MyMaths: Bringing maths alive, https://www.mymaths.co.uk/
[2] VisuAlgo: Visualising data structures and algorithms through animation, https://visualgo.net/en
[3] MySQL Workbench: https://www.mysql.com/products/workbench/
[4] OCR A Level Further Mathematics A (H245) Formulae Booklet,

 http://ocr.org.uk/Images/308765-a-level-further-mathematics-a-formulae-booklet.pdf
[5] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. Introduction to Algorithms

third edition. MIT Press. 2009. ISBN 978-0-262-03384-8.
[6] The MD5 cryptographic hash function, Ius mentis,

http://www.iusmentis.com/technology/hashfunctions/md5/
[7] MD5, Wikipedia, https://en.wikipedia.org/wiki/MD5
[8] By Matt_Crypto - original illustration for Wikipedia, created in Dia., Public Domain,

https://commons.wikimedia.org/w/index.php?curid=214963

https://www.mymaths.co.uk/
https://visualgo.net/en
https://www.mysql.com/products/workbench/
http://ocr.org.uk/Images/308765-a-level-further-mathematics-a-formulae-booklet.pdf
http://www.iusmentis.com/technology/hashfunctions/md5/
https://en.wikipedia.org/wiki/MD5
https://commons.wikimedia.org/w/index.php?curid=214963

