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How to Evaluate a GNN?

« Common approach: train GNNs on some node/graph classification/regression tasks in some
datasets, and then compare their performances on a leaderboard

« If model A's performance is 0.1 higher than model B, does that mean model A is better?

* Previous graph datasets: Cora, CiteSeer, PubMed, ...
...but they have soon become deprecated!

« Current widely-accepted GNN benchmarks: OGB, ZINC, ...
...can they be guaranteed ever-lasting?

 We need atask-agnostic GNN evaluation method to fully exploit the datasets
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Self-Supervised Learning on Graphs

« Current state-of-the-arts: apply handcrafted augmentations to graphs, and maximise the mutual
information between positive pairs, like what people did to images

* You can’t simply add noises to graphs and hope it to work the same as images!

« 3D Infomax: mutual information maximisation between embeddings from 2D and 3D views of
molecular graphs

o Does not require augmentations, but relies on the physical/mathematical properties of molecules

o Not generalisable

« We need a principled SSL method that does not require handcrafted augmentations,
and can be generalised to various graph types
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Our Solution: GraphAC (Graph Adversarial Collaboration)

« Key idea:
o Have two GNNs compete against each other on the same unlabelled graphs
o Each GNN needs to predict the other GNN’s graph embeddings from its own graph embeddings

o Make the more expressive GNN win by producing more complex and informative graph embeddings

« Conceptually novel, principled, and task-agnostic
« No need for handcrafted augmentations!

* Adversarial: prevent the other GNN from predicting the GNN’s own graph embeddings
Collaboration: produce embeddings for the same graphs, and predict each other’'s graph embeddings
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Graph Neural Networks
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Graph Neural Networks
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Graph Neural Networks
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GraphAC Attempt 1: Contestant-Judge Framework (GNNs + MLPs)

H, > MLP4
Lap
Lpa
m Hgz—> MLPg

LMLPA — LAB — MSE(HB, ﬁB)
LMLPB —_ LBA — MSE(HA, ﬁA)

LGNNA = Lap —ALpy

LGNNB = Lpg — ALyp

Unstable training!
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GraphAC Attempt 2: Competitive Barlow Twins
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GraphAC Attempt 2: Competitive Barlow Twins

Original Barlow Twins loss (Zbontar et al., 2021):
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http://proceedings.mlr.press/v139/zbontar21a/zbontar21a.pdf

GraphAC Attempt 2: Competitive Barlow Twins
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GraphAC Attempt 2: Competitive Barlow Twins
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Enables GNNs to predict each other’s output graph embeddings

Enables more expressive GNNSs to win
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Evaluated on the ogbg-molpcba dataset (437,929 molecular graphs)

Successfully distinguish different GNNs, and always enable more expressive GNNs to win
with statistically significant loss differences

Switching the order of GNNs does not affect GraphAC’s performance
Allows GNNs with the same expressivity to tie

Can even produce a total ordering of all GNNs with respect to their expressivity!
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Different numbers of GNN layers (PNAs with 256 hidden dims, aggregators = [max, mean, sumj):

#Layers IN GNNg
2 4

2 -0.094 | 1.402 _

4 0.078 0.722  0.939 1.345
#Layers in GNN, 6 -0.914 0.035 0.701 0.845
8 -0.542 0.010 0.516

10 -1.1/7 -0.434 0.063
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« Different hidden dimensions (PNAs with 4 layers, aggregators = [max, mean, sum]):

#Hidden dims in GNNg

16 32 64 128 256

16 0.007 1.229

32 -1.249 -0.016 0.985 1.545

#Hidden dims in GNN, 64 -0.922 -0.019 1.156
128 -1.671 -1.036 0.092 1.655

256 -1.443 -0.037
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« Different aggregators (PNAs with 4 layers, 64 hidden dims):

Aggregators in GNNg

[max] [mean] [sum] Combined
[max] = -0.025  0.127 ﬁ
[mean] -0.154 -0.011 0.228

Aggregators in GNNg, .0.034 0.175

-0.239 -0.019

[sum]
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« Different GNN architectures (PNA, GIN and GCN with 4 layers, 64 hidden dims):

GNNg architecture
GCN GIN PNA

GCN -0.091 0.483 @ 0.716

GNN, architecture GIN F =0.475  -0.053 @ 0.515

PNA [ 20,652 -0.465 -0.019
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* Including the edge features (PNAs with aggregators = [max, mean, sum]):

#Hidden dimensions
64 128 256
-0.714 -0.750 -0.671

#Layers 6 . -0.925 -0.558 -0.501

8 -0.792 -0.309 -0.422
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