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How to Evaluate a GNN?

• Common approach: train GNNs on some node/graph classification/regression tasks in some 

datasets, and then compare their performances on a leaderboard

• If model A’s performance is 0.1 higher than model B, does that mean model A is better?

• Previous graph datasets: Cora, CiteSeer, PubMed, …

…but they have soon become deprecated!

• Current widely-accepted GNN benchmarks: OGB, ZINC, …

…can they be guaranteed ever-lasting?

• We need a task-agnostic GNN evaluation method to fully exploit the datasets



Self-Supervised Learning on Graphs

• Current state-of-the-arts: apply handcrafted augmentations to graphs, and maximise the mutual 

information between positive pairs, like what people did to images

• You can’t simply add noises to graphs and hope it to work the same as images!

• 3D Infomax: mutual information maximisation between embeddings from 2D and 3D views of 

molecular graphs

o Does not require augmentations, but relies on the physical/mathematical properties of molecules

o Not generalisable

• We need a principled SSL method that does not require handcrafted augmentations,

and can be generalised to various graph types



Our Solution: GraphAC (Graph Adversarial Collaboration)

• Key idea:

o Have two GNNs compete against each other on the same unlabelled graphs

o Each GNN needs to predict the other GNN’s graph embeddings from its own graph embeddings

o Make the more expressive GNN win by producing more complex and informative graph embeddings

• Conceptually novel, principled, and task-agnostic

• No need for handcrafted augmentations!

• Adversarial: prevent the other GNN from predicting the GNN’s own graph embeddings

Collaboration: produce embeddings for the same graphs, and predict each other’s graph embeddings 
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GraphAC Attempt 1: Contestant-Judge Framework (GNNs + MLPs) 

ℒMLP𝐴 = ℒ𝐴𝐵 = MSE 𝐇𝐵 , ෡𝐇𝐵

ℒMLP𝐵 = ℒ𝐵𝐴 = MSE 𝐇𝐴, ෡𝐇𝐴

ℒGNN𝐴 = ℒ𝐴𝐵 − 𝜆ℒ𝐵𝐴

ℒGNN𝐵 = ℒ𝐵𝐴 − 𝜆ℒ𝐴𝐵

Unstable training!



GraphAC Attempt 2: Competitive Barlow Twins

Cross-correlation matrix:
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GraphAC Attempt 2: Competitive Barlow Twins

Original Barlow Twins loss (Zbontar et al., 2021):
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http://proceedings.mlr.press/v139/zbontar21a/zbontar21a.pdf


GraphAC Attempt 2: Competitive Barlow Twins
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GraphAC Attempt 2: Competitive Barlow Twins

• Stable

• Enables GNNs to predict each other’s output graph embeddings

• Enables more expressive GNNs to win



Results

• Evaluated on the ogbg-molpcba dataset (437,929 molecular graphs)

• Successfully distinguish different GNNs, and always enable more expressive GNNs to win 

with statistically significant loss differences

• Switching the order of GNNs does not affect GraphAC’s performance

• Allows GNNs with the same expressivity to tie

• Can even produce a total ordering of all GNNs with respect to their expressivity!



Results

• Different numbers of GNN layers (PNAs with 256 hidden dims, aggregators = [max, mean, sum]):

2 4 6 8 10

2 -0.094 1.402 1.749 1.883 1.977

4 -1.350 0.078 0.722 0.939 1.345

6 -1.638 -0.914 0.035 0.701 0.845

8 -1.837 -1.411 -0.542 0.010 0.516

10 -1.870 -1.532 -1.177 -0.434 0.063

#Layers in GNNB

#Layers in GNNA



Results

• Different hidden dimensions (PNAs with 4 layers, aggregators = [max, mean, sum]):

16 32 64 128 256

16 0.007 1.229 1.964 2.348 2.436

32 -1.249 -0.016 0.985 1.545 2.102

64 -2.034 -0.922 -0.019 1.156 1.870

128 -2.400 -1.671 -1.036 0.092 1.655

256 -2.560 -2.221 -1.931 -1.443 -0.037

#Hidden dims in GNNB

#Hidden dims in GNNA



Results

• Different aggregators (PNAs with 4 layers, 64 hidden dims):

[max] [mean] [sum] Combined

[max] -0.025 0.127 0.322 0.399

[mean] -0.154 -0.011 0.228 0.385

[sum] -0.329 -0.277 -0.034 0.175

Combined -0.342 -0.307 -0.239 -0.019

Aggregators in GNNB

Aggregators in GNNA



Results

• Different GNN architectures (PNA, GIN and GCN with 4 layers, 64 hidden dims):

GCN GIN PNA

GCN -0.091 0.483 0.716

GIN -0.475 -0.053 0.515

PNA -0.652 -0.465 -0.019

GNNB  architecture

GNNA  architecture



Results

• Including the edge features (PNAs with aggregators = [max, mean, sum]):

64 128 256

4 -0.714 -0.750 -0.671

6 -0.925 -0.558 -0.501

8 -0.792 -0.309 -0.422

#Hidden dimensions

#Layers
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