Task-Agnostic Graph Neural Sy,
Network Evaluation via =
Adversarial Collaboration

CST Part Il Project Presentation

Victor Zhao /
8 June 2022

Department of Computer Science and Technology

How to Evaluate a GNN?

« Common approach: train GNNs on some node/graph classification/regression tasks in some
datasets, and then compare their performances on a leaderboard

« If model A's performance is 0.1 higher than model B, does that mean model A is better?

* Previous graph datasets: Cora, CiteSeer, PubMed, ...
...but they have soon become deprecated!

« Current widely-accepted GNN benchmarks: OGB, ZINC, ...
...can they be guaranteed ever-lasting?

 We need atask-agnostic GNN evaluation method to fully exploit the datasets

UNIVERSITY OF

CAMBRIDGE

Self-Supervised Learning on Graphs

« Current state-of-the-arts: apply handcrafted augmentations to graphs, and maximise the mutual
information between positive pairs, like what people did to images

* You can’t simply add noises to graphs and hope it to work the same as images!

« 3D Infomax: mutual information maximisation between embeddings from 2D and 3D views of
molecular graphs

o Does not require augmentations, but relies on the physical/mathematical properties of molecules

o Not generalisable

« We need a principled SSL method that does not require handcrafted augmentations,
and can be generalised to various graph types

UNIVERSITY OF

CAMBRIDGE

Our Solution: GraphAC (Graph Adversarial Collaboration)

« Key idea:
o Have two GNNs compete against each other on the same unlabelled graphs
o Each GNN needs to predict the other GNN’s graph embeddings from its own graph embeddings

o Make the more expressive GNN win by producing more complex and informative graph embeddings

« Conceptually novel, principled, and task-agnostic
« No need for handcrafted augmentations!

* Adversarial: prevent the other GNN from predicting the GNN’s own graph embeddings
Collaboration: produce embeddings for the same graphs, and predict each other’'s graph embeddings

CAMBRIDGE

Graph Neural Networks

Input graph GNN layers Node Graph
embeddings embeddings

~85 UNIVERSITY OF
§ CAMBRIDGE

Graph Neural Networks

Layer | +1

— o
T Eew B - o

|
- —_.--- ------------------ ’ f ------------------- » ENewm_ E_=
|
Message passing Aggregate Transform Update

UNIVERSITY OF

CAMBRIDGE

Graph Neural Networks

h*Y = yPDATE [h¥, GB MESSAGE (h{’, h", e,)

VENy,

#B> UNIVERSITY OF

“§ CAMBRIDGE

GraphAC Attempt 1: Contestant-Judge Framework (GNNs + MLPs)

H, > MLP4
Lap
Lpa
m Hgz—> MLPg

LMLPA — LAB — MSE(HB, ﬁB)
LMLPB —_ LBA — MSE(HA, ﬁA)

LGNNA = Lap —ALpy

LGNNB = Lpg — ALyp

Unstable training!

UNIVERSITY OF

CAMBRIDGE

GraphAC Attempt 2: Competitive Barlow Twins

HA

Zgb(HA)bi(HB)bj

ij:\/z () |38 ((Hdoy)

Cross-corr.
matrix

Cross-correlation matrix:

UNIVERSITY OF

CAMBRIDGE

GraphAC Attempt 2: Competitive Barlow Twins

Original Barlow Twins loss (Zbontar et al., 2021):

UNIVERSITY OF
CAMBRIDGE

H4

Ly

Cross-corr.
matrix

A 4

™)

Target
Cross-corr.

http://proceedings.mlr.press/v139/zbontar21a/zbontar21a.pdf

GraphAC Attempt 2: Competitive Barlow Twins

HA

Cross-corr.
matrix
=t
d d d
£GNNA — £CompetitiveBTA = 2(1 - Cii)2 + 1 Z 2 C] - /-12 2 Cizj
l

£Competit’.iveBT

i j>i j i>j
d
LGNNB — LCompetitiveBTB — 2(1 - Cii)2 + A 2 Z C 'uz Z Cizf
i j i>j L J>t

UNIVERSITY OF

CAMBRIDGE

GraphAC Attempt 2: Competitive Barlow Twins

Stable

H4

Cross-corr.
matrix

£Competit’.iveBT

Enables GNNs to predict each other’s output graph embeddings

Enables more expressive GNNSs to win

UNIVERSITY OF

CAMBRIDGE

Evaluated on the ogbg-molpcba dataset (437,929 molecular graphs)

Successfully distinguish different GNNs, and always enable more expressive GNNs to win
with statistically significant loss differences

Switching the order of GNNs does not affect GraphAC’s performance
Allows GNNs with the same expressivity to tie

Can even produce a total ordering of all GNNs with respect to their expressivity!

UNIVERSITY OF

CAMBRIDGE

Different numbers of GNN layers (PNAs with 256 hidden dims, aggregators = [max, mean, sumj):

#Layers IN GNNg
2 4

2 -0.094 | 1.402 _

4 0.078 0.722 0.939 1.345
#Layers in GNN, 6 -0.914 0.035 0.701 0.845
8 -0.542 0.010 0.516

10 -1.1/7 -0.434 0.063

UNIVERSITY OF

i CAMBRIDGE

« Different hidden dimensions (PNAs with 4 layers, aggregators = [max, mean, sum]):

#Hidden dims in GNNg

16 32 64 128 256

16 0.007 1.229

32 -1.249 -0.016 0.985 1.545

#Hidden dims in GNN, 64 -0.922 -0.019 1.156
128 -1.671 -1.036 0.092 1.655

256 -1.443 -0.037

UNIVERSITY OF

i CAMBRIDGE

« Different aggregators (PNAs with 4 layers, 64 hidden dims):

Aggregators in GNNg

[max] [mean] [sum] Combined
[max] = -0.025 0.127 ﬁ
[mean] -0.154 -0.011 0.228

Aggregators in GNNg, .0.034 0.175

-0.239 -0.019

[sum]

B> UNIVERSITY OF

i CAMBRIDGE

« Different GNN architectures (PNA, GIN and GCN with 4 layers, 64 hidden dims):

GNNg architecture
GCN GIN PNA

GCN -0.091 0.483 @ 0.716

GNN, architecture GIN F =0.475 -0.053 @ 0.515

PNA [20,652 -0.465 -0.019

UNIVERSITY OF

i CAMBRIDGE

* Including the edge features (PNAs with aggregators = [max, mean, sum]):

#Hidden dimensions
64 128 256
-0.714 -0.750 -0.671

#Layers 6 . -0.925 -0.558 -0.501

8 -0.792 -0.309 -0.422

UNIVERSITY OF

i CAMBRIDGE

5 UNIVERSITY OF

&% CAMBRIDGE

Q&A

Department of Computer Science and Technology

5 UNIVERSITY OF

¢V CAMBRIDGE

Special thanks to:

Prof Pietro Lio
Dr Dominique Beaini
Hannes Stark

Department of Computer Science and Technology

