
Task-Agnostic Graph Neural Network
Evaluation via Adversarial

Collaboration

Xiangyu Zhao
Trinity College

27 May 2022

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the

Computer Science Tripos, Part III



Declaration of Originality

I, Xiangyu Zhao of Trinity College, being a candidate for Computer Science Tripos,
Part III, hereby declare that this report and the work described in it are my own work,
unaided except as may be specified below, and that the report does not containmaterial
that has already been used to any substantial extent for a comparable purpose.

Signed:

Date: 27 May 2022

Total page count: 58

Main chapters (excluding front-matter, references and appendix): 39 pages (pp. 9–47)

Main chapters word count: 11185

Methodology used to generate that word count:

$ make wordcount

texcount -1 -sum report-submission.tex

11185

2



Acknowledgements

This project would not have been possible without the invaluable support from Prof
Pietro Liò, Dr Dominique Beaini and Hannes Stärk, including holding weekly meet-
ings to provide me detailed guidance on the project and the dissertation, promptly
answering my questions whenever I was in doubt, and kindly encouraging me when
I experienced setbacks. I would especially like to thank Hannes Stärk for sharing his
3D Infomax repository with me, and arranging one-to-one coding sessions to help me
familiarise its source code. I would like to thank Dr Petar Veličković and Prof Pietro
Liò again, for delivering the wonderful Representation Learning on Graphs and Net-
works (L45) course, which significantly deepened my understandings towards GNNs
and self-supervised learning on graphs. I would also like to thank Chaitanya Joshi and
Cristian Bodnar, for supervisingmy L45mini-project, which also providedme valuable
insights towards this project. I am also very grateful to Dr Sean Holden, my Director
of Studies and supervisor of my Part II project, who helped me turn my Part II project
into a publication and taught me lots of useful academic writing tips.

This work was performed using resources provided by the Cambridge Service for
Data Driven Discovery (CSD3) operated by the University of Cambridge Research
Computing Service (www.csd3.cam.ac.uk), provided by Dell EMC and Intel using
Tier-2 funding from the Engineering and Physical Sciences Research Council (capital
grant EP/T022159/1), and DiRAC funding from the Science and Technology Facilities
Council (www.dirac.ac.uk). I would like to thank Malcolm Scott, the IT Infrastructure
Specialist at the Department of Computer Science and Technology, for providing me
the CSD3 resources, and the Cambridge High Performance Computing Service (HPCS)
support team for resolving my questions regarding the CSD3 usage.

Finally, I would like to thank my parents, Haiming Zhao and Xianli Sun, for their
wholehearted support, both financially and emotionally, throughout my entire study
at Cambridge. I can always feel their enduring love and care even though we are more
than 5,000miles apart. I would also like to givemy special thanks tomy dear girlfriend,
Jing Zeng, for her warmest love and support that accompanied me through all sorts of
difficulties.

3

www.csd3.cam.ac.uk
www.dirac.ac.uk


Abstract

Graph Neural Networks (GNNs) have experienced rapid growth over the last decade,
and have been successful in many real-world applications. In order to cope with the
rapid growth of this field, it is increasingly demanding to develop reliable GNN eval-
uation methods to facilitate GNN research and quantify their progress. Current GNN
benchmarkingmethods all focus on comparing the GNNswith respect to their training
performances on some node/graph classification/regression tasks in certain datasets,
but there has not been any principled, task-agnostic method to directly compare the
two GNNs.

Furthermore, learning informative representations of graph-structured data using self-
supervised learning (SSL) is becoming crucial in many real-world tasks nowadays,
when labelled data are expensive and limited. Most of the existing graph SSL works
incorporate handcrafted augmentations to the graph, which has several severe difficul-
ties due to the unique characteristics of graph-structured data. Therefore, it is highly
needed to develop a principled SSL framework across various types of graphs, that
does not require handcrafted augmentations.

In this project, I tackled both questions above, and developed GraphAC (Graph Ad-
versarial Collaboration), a conceptually novel, principled, task-agnostic, and stable
framework for evaluating GNNs through contrastive self-supervision. It consists of
two different GNNs directly competing against each other, with the more expressive
GNN wins by producing more informative graph representations. I built two frame-
works for GraphAC, and designed a novel objective function that enables stable and
effective training of two different GNNs, inspired by Barlow Twins.

The experimental results show that GraphAC succeeds in distinguishing GNNs of
different expressivity across various aspects including the number of layers, hidden
dimensionality, aggregators, GNN architecture and edge features, and always allow
more expressive GNNs towinwith statistically significant difference. GraphACproved
to be a principled and reliable GNN evaluationmethod, and enables stable SSLwithout
needing handcrafted augmentations.
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Chapter 1

Introduction

1.1 Motivation

Graph Neural Networks (GNNs) have attracted an enormous amount of research inter-
est over the last fewyears, andhavemade significant advancements that are successfully
applied to a wide diversity of domains beyond computer science, such as chemistry
(Gilmer et al., 2017), biology (Stokes et al., 2020), social science (Monti et al., 2019)
and e-commerce (Ying et al., 2018). As this field rapidly grows, it becomes crucial
to develop reliable benchmark datasets to facilitate GNN research and quantify their
performances. The graph datasets built in the early stage, such as Cora (McCallum
et al., 2000), CiteSeer (Getoor, 2005) and PubMed (Sen et al., 2008), have soon become
deprecated as newly developed GNNs can easily overfit those small-scale datasets, and
there is no guarantee that the current widely-accepted GNN benchmarks (Dwivedi
et al., 2020; Hu et al., 2020) can be everlasting. While there is an ongoing need to build
powerful graph datasets that meet the requirements of the latest progress on GNNs,
it is still highly desired to develop GNN evaluation methods that can fully exploit the
current datasets, in order to extend their lifespan.

There have been some work concerning the evaluation of GNNs’ capacities against
theoretical tests such as the Weisfeiler-Lehman (1-WL) graph isomorphism test (Weis-
feiler and Leman, 1968; Xu et al., 2019; Dwivedi et al., 2020), but they are limited in
the information that they provide. Toy benchmarks were also developed to measure
a GNN’s ability to detect patterns, substructures and clusters (Dwivedi et al., 2020),
or graph properties such as diameter, eccentricity, and spectral radius (Corso et al.,
2020). However, they cannot be used consistently, since certain GNN types can use
this information as positional encodings, and thus directly cheating the task (Kreuzer
et al., 2021; Bodnar et al., 2021; Dwivedi et al., 2022). Therefore, there is a need for a
task-agnostic evaluation of the GNNs’ expressivity.
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Another challenge for GNNs is designing principled self-supervised learning (SSL)
methods on graphs. As labelled data can be expensive, limited or even unavailable in
many real-word scenarios, it has become increasingly demanding to develop powerful
SSL methods on graphs. A lot of successful SSL works on graphs (Veličković et al.,
2019; You et al., 2020, 2021; Xu et al., 2021) tend to adapt the success of SSL on images
(Chen et al., 2020) to the graph domain, by applying handcrafted augmentations to the
graphs and then trying to maximise the mutual information between positive pairs.
However, there are several key difficulties in applying augmentations to graphs. Firstly,
there exists no universal augmentation that works across all types of graphs. Secondly,
graphs are not invariant to augmentations like images: applying filters or rotating
an image still preserves its essential invariances, but even a tiny augmentation on a
graph can significantly change its topological structure or intrinsic properties. There
is another class of SSL methods on graphs that do not require augmentations (Stärk
et al., 2021), but they rely on exploiting the mathematical/physical properties of some
specific types of graphs, and cannot be generalised to other graph types. Therefore, it
is highly desired to develop a principled and generalisable SSL framework that does
not require handcrafted augmentations.

In this project, I tackled all the above questions, and developed GraphAC (Graph Ad-
versarial Collaboration), a conceptually novel, principled, and task-agnostic framework
for evaluating GNNs in a self-supervised, adversarial collaboration manner, without
the need of handcrafted augmentations. In the GraphAC framework, two GNNs di-
rectly compete against each other on the same unlabelled graphs, in which the more
expressive GNNproducesmore complex and informative graph embeddings andwins
the game.

The analogical reasoning behind GraphAC is as follows: imagine a graph dataset as an
arena, where each graph is an animal with a bounty, and a GNN as a worrier. In the
conventional GNN benchmarking methods, only one warrior enters the area at each
time, and the warriors are ranked by the amount of bounties they claimwithin a certain
period of time, by catching asmany animals as they can. However, thesemethod do not
compare the warriors directly against each other, and such ranking methods can fail, if
the animals are not strong enough, or the bounties are poorly designed, or one warrior
discovers a trick to catchmany animals without genuinelymaking efforts. In GraphAC,
the warriors are ranked by directly fighting against each other in the arena, which can
produce unquestionable winners based on the warriors’ actual skills. Further more,
the warriors can also improve their skills through fighting against their opponents, and
actively practice to catch more animals in order to claimmore bounties, which can help
them in defeating their opponents. This also provides an insight of GraphAC to the
SSL aspect.
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1.2 Contributions

GraphAC has made the following contributions to the graph SSL community:

• Introduces a completely novel principle of evaluating GNNs, by having them
directly compete against each other in a self-supervised manner, rather than
comparing them using a scoreboard of training performances on some datasets;

• inspired by the novel principle, proposes a novel architecture and an original
modification to the existing Barlow Twins loss (Zbontar et al., 2021) that enables
the GNNs to stably compete against each other, while ensuring that more expres-
sive GNNs can always win;

• develops a principled SSL framework without needing any handcrafted augmen-
tations, which is also generalisable to various types of GNNs.
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Chapter 2

Background

2.1 Deep Learning

2.1.1 Multi-Layer Perceptrons

Deep learning is a family ofMLmethods that aims at learning to approximate functions
using artificial neural networks (ANNs). Deep neural networks (DNNs) are a class of
ANNswithmultiple layers between the input andoutput layers. Multilayerperceptrons
(MLPs) are the most basic subset of DNNs: they are feedforward DNNs composed
of fully connected layers. Each layer contains multiple perceptrons, which serve as
elementary units in DNNs. A perceptron receives an input feature vector x and applies
it to a linear function defined by a weight vector w and a bias b. The result is then
modified by a non-linear activation function σ, as described by the following formula:

a = σ(z) = σ(wTx+ b) = σ

(
b+

d∑
i=1

wixi

)
(2.1)

Figure 2.1a illustrates the structure of a perceptron. The non-linear activation function
is used to allow DNNs to compute non-trivial problems using only a small number
of perceptrons or layers of perceptrons, as otherwise the composition of two linear
functions is still linear. Some common activation functions include the logistic function
(sigmoid), hyperbolic tangent (tanh), and rectified linear unit (ReLU).

In an MLP, data flow in only one direction: from the input perceptrons, through the
perceptrons in the hidden layers, and finally to the output perceptrons. This process
is also called forward propagation. There are no cycles in an MLP, and hence the
data never go backward. The forward propagation can be expressed by the following
equation:

h(l+1) = σ(l)
(
W(l)h(l) + b(l)

)
(2.2)
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(a) A perceptron (b) An MLP

Figure 2.1: Example structures of a perceptron and an MLP

where W(l) =
[
w

(l)
1 · · · w

(l)
n

]>
and b(l) =

[
b
(l)
1 · · · b

(l)
n

]>
are the weight matrix and

bias vector of the l-th layer, and h(l) is the latent input of the l-th layer. An example
MLP structure is illustrated in Figure 2.1b.

The universal approximation theorem (Hornik et al., 1989; Hornik, 1991) states that
MLPs with a sufficient number of weights and at least one hidden layer layers are
capable of approximating any continuous function. This also provides theoretical
grounds for using MLPs as building blocks for GNNs.

2.1.2 Training

The training process of a DNN is done by iteratively adjusting the weights of the DNN
in order to minimise a differentiable loss function L. The DNN can do so by using
stochastic gradient descent: starting with an appropriately initialised w0, a mini-batch
of m training examples is selected and fed into the DNN at each iteration; then, the
DNN computes the output and the loss of themini-batch via forward propagation, and
the weights of the DNN are iteratively updated by a small amount in the direction of
the negative gradient of L, as described by the following formula:

wt+1 = wt − η
∂L
∂w

∣∣∣∣
wt

(2.3)

where η is a small positive value known as the learning rate. The learning rate must be
chosen carefully to obtain the best training outcome.

The gradient of the loss function with respect to the weights can be computed using the
backpropagation algorithm: the gradients are propagated reversely, from the output
perceptrons to the input perceptrons, through the perceptrons in the hidden layers,
based on the chain rule:

∂L
∂w

=
∂L
∂a

∂a

∂z

∂z

∂w
(2.4)
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The loss function must be chosen appropriately for each ML task, with sufficient math-
ematical grounds, in order to properly measure the DNN’s performance on the task.
For example, for regression tasks, mean absolute error (MAE) or mean squared error
(MSE) can be used as the loss function; for classification tasks, categorical cross-entropy
can be used as the loss function; for an unsupervised learning task modelled by a vari-
ational autoencoder, a combination of reconstruction error and Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951) is chosen as the loss function (Kingma and
Welling, 2014).

Various regularisation and optimisation techniques, including but not limited to
dropout (Srivastava et al., 2014), batch normalisation (Ioffe and Szegedy, 2015) and
adaptive learning rates such as Adam (Kingma and Ba, 2015), can be used in order to
improve training performance.

2.2 Graph Neural Networks

A graph G = (V , E) is a collection of nodes V and edges E ⊆ V × V between pairs of
nodes. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, denoted G1 ∼= G2,
if and only if there exists an edge-preserving bĳective mapping f : V1 → V2 between
them, i.e.,

∀u, v ∈ V1 . (u, v) ∈ E1 ⇐⇒
(
f(u), f(v)

)
∈ E2 (2.5)

In graph representation learning, a graph can be represented by a tuple of features
(X,E,A), where

• X ∈ R|V|×d is the node feature matrix of the graph, with each row xu ∈ Rd being
the d-dimensional features of node u;

• E ∈ R|E|×de is the edge feature matrix of the graph, with each row euv ∈ Rde being
the de-dimensional features of edge (u, v); and

• A ∈ {0, 1}|V|×|V| is the adjacency matrix of the graph, with each entry Auv repre-
senting an edge between nodes u and v: Auv = 1 if there exists an edge between
nodes u and v (i.e., (u, v) ∈ E), and 0 otherwise.

GNNs are a class of DNNs designed to operate on graph-structured data. The key idea
of the GNNs is to generate representations of nodes and graphs that actually depend
on the structures of the graphs, as well as their feature information (Hamilton, 2020).
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2.2.1 Permutation Invariance and Equivariance

Since the key structural property of graphs is that the nodes in V are usually not
assumed to be provided in any particular order, any operations performed on graphs
should not depend on the ordering of nodes. This makes the usual DNN architectures
unsuitable for graphs, such as the convolutional neural networks (CNNs) designed
for grid-structured inputs (for example, images), and the recurrent neural networks
(RNNs) designed for sequences (for example, text). In order to design a GNN that
is independent of the ordering of the nodes, while respecting individual node-wise
transformation, theGNNmodel and its layers shouldmaintain the following properties
(Bronstein et al., 2021):

• Permutation invariance: a (graph-level) function f is permutation invariant if, for
any permutation matrix P,

f(PX,PAP>) = f(X,A) (2.6)

This means that permuting the nodes does not modify the results, and implies
that for any two isomorphic graphs, the outcomes of f are identical.

• Permutation equivariance: a (node-level) function F is permutation equivariant
if, for any permutation matrix P,

F (PX,PAP>) = PF (X,A) (2.7)

This means that the order of the rows of F ’s output is tied to the order of the rows
ofX, so that each output node representation can consistently correspond to each
input node.

An important constraint when designing deep learning models is locality, i.e., it is
desirable to have the transformation stable under slight deformations (for example,
shifts and distortions) of the domain. This can be enforced on graphs in the context of
neighbourhoods: let the (1-hop) neighbourhood of node u, denoted Nu, be defined as

Nu =
{
v
∣∣ (u, v) ∈ E ∨ (v, u) ∈ E

}
(2.8)

and the neighbourhood features of node u as the multiset

XNu = {{xv | v ∈ Nu}} (2.9)

Then, a permutation equivariant function F enforcing locality on graphs can be con-
structed by applying a permutation invariant local function φ(xu,XNu) to every node’s
neighbourhood in isolation.
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2.2.2 Message Passing Neural Networks

Almost all existing GNNs can be abstracted as variants of Message Passing Neural
Networks (MPNNs, Gilmer et al., 2017). In a generic MPNN, the message passing
operation iteratively updates the features in every node from layer l to layer l + 1 via
propagating messages through neighbouring nodes, obtaining the set of latent node
features h(l)

u ∈ Rd for u ∈ V and 1 ≤ l ≤ L. This can be formalised by the following
equation:

h(l+1)
u = UPDATE

(
h(l)
u ,
⊕
v∈Nu

MESSAGE
(
h(l)
u ,h

(l)
v , euv

))
(2.10)

where

• MESSAGE and UPDATE are learnable functions, such as MLPs;

• Nu is the neighbourhood of node u, as defined by Equation (2.8); and

•
⊕

is a permutation invariant local neighbourhood function, such as sum, mean
or max.

After L layers of message passing, the final node embeddings h(L)
u are obtained. The

graph embedding hG ∈ Rd can be computed from the node embeddings via a READ-
OUT function:

hG = READOUT
(
{{h(L)

u | u ∈ V}}
)

(2.11)

The node and graph embeddings can then be used for any relevant downstream tasks.
MPNNs draw an analogywith CNNs by considering its update operation as a convolu-
tional aggregation across neighbourhoods of nodes. Examples of convolutional GNNs
include Graph Convolutional Network (GCN, Kipf and Welling, 2017), Graph Isomor-
phismNetwork (GIN, Xu et al., 2019) and Principal NeighbourhoodAggregation (PNA,
Corso et al., 2020), which are further described in Sections 2.2.4, 2.2.5 and 2.2.6.

2.2.3 Expressivity of Graph Neural Networks

The expressivity of a GNN can be defined as the ability to distinguish non-isomorphic
graphs. Formally, a GNNmodel A is strictly more expressive than another GNNmodel B, if A
can distinguish all the pairs of attributed graphs that B can distinguish, and there there exists at
least a pair of attributed graphs thatA can distinguish but B cannot. The expressivity ofGNNs
can be analysed by comparing to the Weisfeiler-Lehman (1-WL) graph isomorphism
test (Weisfeiler and Leman, 1968). The 1-WL test is a simple heuristic for distinguishing
most of the pairs of non-isomorphic graphs. Similar to GNNs, the 1-WL test iteratively
updates the node labels (colours) of a graph by neighbourhood aggregation: for each
node u ∈ V in a graph, an initial node colour C(0)

u is assigned, and is iteratively updated
using random hashes of sums:

C(t+1)
u = HASH

(∑
v∈Nu

C(t)
v

)
(2.12)
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The 1-WL test terminates when stable node colouring of the graph is reached, and
outputs a histogram of colours. Two graphs with different colour histograms are
guaranteed to be non-isomorphic, and two graphs with the same colour histograms
are possibly, but not necessarily, isomorphic. An example of execution of the 1-WL test
on two isomorphic graphs is shown in Figure 2.2, and an example of non-isomorphic
graphs that the 1-WL test fails to distinguish is shown in Figure 2.3.

Xu et al. (2019) have proved that any aggregation-basedGNNs can only be as expressive
as the 1-WL test. Although aGNN that share the same architecture as another GNNbut
with more parameters (for example, more hidden layer or larger hidden dimensions)
is not mathematically strictly more expressive, it tend to be practically more expressive
as it can capture more information of the graphs by having more parameters, and is
therefore more capable of distinguishing non-isomorphic graphs, provided that it does
not overfit the data.

Figure 2.2: Example of execution of the 1-WL test on two isomorphic graphs. The
algorithm stops after the colouring does not change and produces an output (histogram
of colours). Equal outputs for the two graphs suggest that they are possibly isomorphic.
Figure adapted from (Bronstein, 2020).

Figure 2.3: Two non-isomorphic graphs on which the 1-WL test fails, as evident from
the identical colouring it produces. In chemistry, these graphs represent the molecular
structure of two different compounds, decalin (left) and bicyclopentyl (right). Figure
adapted from (Sato, 2020).
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2.2.4 Graph Convolutional Networks

GCN is a simple and classic GNN architecture developed in the early stage, and is used
as a baseline model in the experiments of this project. In a vanilla GCN, the layer-wise
graph convolution operation on all node features is defined as

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W(l)

)
(2.13)

where

• Ã = A+ I is the adjacency matrix of the graph with added self-connections;

• D̃ is the corresponding degree matrix of Ã: D̃uu =
∑

v∈V Ãuv, and 0s elsewhere;

• W(l) ∈ Rd×d is a layer-specific trainable weight matrix; and

• σ denotes a non-linear activation function.

This yields the corresponding node-wise propagation rule:

h(l+1)
u = σ

 ∑
v∈Nu∪{u}

cuvW
(l)h(l)

v

 (2.14)

where cuv is a constant for each pair of nodes i and j:

cuv =

√
1

(deg(u) + 1)(deg(v) + 1)
(2.15)

GCN is proved to be less expressive than the 1-WL test (Xu et al., 2019).

2.2.5 Graph Isomorphism Networks

GIN is the first attempt at developing a maximally-expressive GNN under the 1-WL
limit, and serves as another baseline model in the experiments of this project. The
update operation in a GIN layer is defined as

h(l+1)
u = φ(l)

((
1 + ε(l)

)
h(l)
u +

∑
v∈Nu

h(l)
v

)
(2.16)

where φ(l) is an MLP, and ε(l) is a learnable scalar. Instead of only using the final node
embeddings for the graph-level representation, GIN computes the graph embedding
by concatenating the node features across all intermediate layers (Xu et al., 2018):

hG = CONCAT
(∑
u∈V

h(l)
v

∣∣∣∣∣ l = 1, · · · , L

)
(2.17)
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GIN is provably as expressive as the 1-WL test, which makes it one of the maximally-
expressive GNNs, according to Xu et al. (2019) and Corso et al. (2020).

2.2.6 Principal Neighbourhood Aggregation

PNA is a general and flexible architecture that enables the use of multiple aggregators
concurrently, instead of using only a single aggregation method. PNA is used as the
core model in all experiments of this project. Examples of PNA’s aggregators include:

• Mean and sum aggregations:

mean
u

(H(l)) =
1

deg(u)
∑
v∈Nu

h(l)
v sumu(H

l) =
∑
v∈Nu

h(l)
v (2.18)

• Maximum and minimum aggregations:

maxu(H(l)) = max
v∈Nu

h(l)
v minu(H(l)) = min

v∈Nu

h(l)
v (2.19)

• Standard deviation aggregation:

std
u
(H(l)) =

√
ReLU

(
mean

u

(
(H(l))2

)
−mean

u
(H(l))2

)
+ ε (2.20)

where ReLU is the rectified linear unit used to avoid negative values caused
by numerical errors, and ε is a small positive value to ensure that the standard
deviation is differentiable.

In addition, once the messages are aggregated, they are multiplied by multiple scaler
functions to perform amplifications or attenuations of the incoming messages. Corso
et al. (2020) propose the logarithm scaler for PNA, which can be generalised by the
following function, with positive exponent α for amplification, negative for attenuation
and zero for no scaling, and δ being a normalisation parameter computed over the
training set:

δ =
1

|Gtrain|
∑
G∈Gtrain

∑
u∈VG

log (deg(u) + 1)

S(u, α) =

(
log (deg(u) + 1)

δ

)α
(−1 ≤ α ≤ 1)

(2.21)

In the original PNA paper, the authors defined the overall aggregation function
⊕

for
PNA as four neighbourhood-aggregators with three degree-scalers each, as shown in
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the following equation:

⊕
=


identity

amplification

attenuation


︸ ︷︷ ︸

scalers

⊗


mean

max

min

std


︸ ︷︷ ︸
aggregators

=


S(V , α = 0)

S(V , α = 1)

S(V , α = −1)


︸ ︷︷ ︸

scalers

⊗


mean

max

min

std


︸ ︷︷ ︸
aggregators

(2.22)

where ⊗ denotes the tensor product. The PNA operator can then be inserted into the
standard MPNN framework, obtaining the following PNA layer:

h(l+1)
u = φ(l)

(
h(l)
u ,
⊕
v∈Nu

ψ(l)
(
h(l)
u ,h

(l)
v , euv

))
(2.23)

where ψ, φ are MLPs. An optional residual or gated recurrent unit (GRU, Cho et al.,
2014) connection can be added after each PNA layer, and Set2Set (Vinyals et al., 2016)
is used as the readout function for obtaining the final graph embeddings.

PNA is practically more expressive than GIN by includingmore aggregators and there-
fore increasing the probability that at least one of the aggregators can distinguish
different graphs, according to Corso et al. (2020).

2.3 Self-Supervised Learning

SSL aims to learn useful representations of the input data without relying on annotated
labels. Typical training paradigms to apply self-supervision include unsupervised
representation learning, unsupervised pre-training, and auxiliary learning (Xie et al.,
2022):

• In unsupervised representation learning, only the unlabelled data is available for
the entire training process. The unsupervised representation learning paradigm
on graph-structured data (X,E,A) can be formulated as

f ∗θ = argmin
θ

LSSL(θ)

h∗ = f ∗θ(X,E,A)
(2.24)

The learned representations h∗ can then be used in further downstream tasks.

• In unsupervised pre-training, an encoder fθ is trained first with unlabelled data.
Then, the parameters θ of the pre-trained encoder is used as the initialisation of
the encoder in a supervised fine-tuning task, together with a prediction head θ′.
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Formally,
fθinit = argmin

θ

LSSL(θ)

f ∗θ,θ′ = argmin
θ,θ′

LSL(θ,θ
′)

(2.25)

For semi-supervised learning using this paradigm, the labelled graphs in the fine-
tuning dataset are a subset of the pre-training dataset. For transfer learning, the
pre-training and fine-tuning datasets are from different domains.

• In auxiliary learning, an auxiliary task under self-supervision is included to con-
tribute to the main supervised learning task. The encoder is trained through both
the main task and the auxiliary task simultaneously. This can be formulated as

f ∗θ,θ′ = argmin
θ,θ′

(
LSL(θ,θ

′) + λLSSL(θ)
)

(2.26)

where λ is a positive scalar weight that balances the two terms in the loss.

The three SSL training paradigms are illustrated in Figure 2.4.

Figure 2.4: Paradigms for self-supervised learning. Top: in unsupervised representa-
tion learning, only the unlabelled are used to train the encoder through the SSL task.
The learned representations are fixed and used in downstream tasks. Middle: unsu-
pervised pre-training trains the encoder with unlabelled data by the SSL task. The
pre-trained encoder’s parameters are then used as the initialization of the encoder for
supervised fine-tuning in downstream tasks. Bottom: in auxiliary learning, an auxil-
iary SSL task is included to help learn the supervised main task. The encoder is trained
through both themain task and the auxiliary task simultaneously. Figure adopted from
(Xie et al., 2022).
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Figure 2.5: Comparison between contrastive learning and predictive learning. Figure
adopted from (Xie et al., 2022).

2.3.1 Contrastive Learning

Based on how the training task is designed, SSL methods can be divided into two main
categories: contrastive learning and predictive learning (Xie et al., 2022). The major
difference between the two categories is that contrastive learning requires data-data
pairs for training, whereas predictive learning adapts a more supervised fashion and
requires data-label pairs, where the labels are self-generated from the data. The com-
parison between contrastive learning and predictive learning is illustrated in Figure 2.5.
In the context of this project, only the contrastive learning framework is relevant.

In contrastive learning, given a set of unlabelled training data, one or more encoders
are trained such that representations of similar data instances agree with each other,
and representations of dissimilar data instances differ from each other. In general,
given a graph-structured data (X,E,A), multiple transformations T1, · · · , TK are ap-
plied to obtain different views (X̃1, Ẽ1, Ã1), · · · , (X̃K , ẼK , ÃK) of the graph. Then a set
of encoders f1, · · · , fK take corresponding views as their inputs and output the rep-
resentations h1, · · · ,hK of the graph from the views, as summarised by the following
equations: for k = 1, · · · , K,

(X̃k, Ẽk, Ãk) = Tk(X,E,A)

hk = fk(X̃k, Ẽk, Ãk)
(2.27)

During training, the objective of contrastive learning is to discriminate jointly sampled
viewpairs (for example, two views belonging to the same instance) from independently
sampled view pairs (for example, two views belonging to different instnaces). This
can be abstracted as to maximise the agreement between representations computed
from jointly sampled view pairs. The agreement is usually measured by the mutual
information I(hi;hj) between a pair of representations hi and hj , which is defined as

I(hi;hj) = DKL
(
p(hi,hj)

∥∥p(hi)p(hj)) = Ep(hi,hj)

[
log p(hi,hj)

p(hi)p(hj)

]
(2.28)
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where DKL(p‖q) denotes the KL divergence from distribution p to distribution q. In
order to computationally estimate the mutual information, various lower-bounds to
the mutual information are derived, including the Donsker-Varadhan representation
ÎDV (Donsker and Varadhan, 1983), the Jensen-Shannon estimator ÎJS (Nowozin et al.,
2016), and the noise-contrastive estimation ÎNCE (Gutmann and Hyvärinen, 2010).
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Chapter 3

Related work

3.1 General Advances in Contrastive Self-Supervised
Learning

As far as I am aware, there has not been any published attempt to develop a method
for evaluating DNN models by directly competing two DNNs in a contrastive self-
supervised environment, no matter in the general domain or the graph domain. To
my knowledge, all works that develop new deep learning methods tend to compete
against other methods by comparing their performances on one or several datasets,
without setting up an environment for the methods to directly compete against each
other. However, the state-of-the-arts in contrastive SSL, both in the non-graph domain
and the graph domain, are still relevant to this project, as their successes in building
contrastive learning architectures can serve as valuable references. It should be em-
phasised that, since this project aims at task-agnostic evaluations on GNNs rather than
optimising downstream tasks, the performances of the state-of-the-arts in contrastive
SSL on downstream tasks are not relevant to this project.

Generative adversarial networks (GANs, Goodfellow et al., 2014) are perhaps one of
the most classic contrastive SSL framework. GANs are based on a game in which a
generator network produces synthetic samples, and a discriminator network acts as its
adversary and attempts to distinguish between samples drawn from the training data
and samples produced by the generator network. The core idea of GANs is to train the
generator network to fool the discriminator. Unfortunately, in general, simultaneous
gradient descent on twonetworks’ losses is not guaranteed to reach an equilibrium. This
causes many variants of GANs to suffer from non-convergence and high sensitivity to
the hyperparameter selections (Goodfellow, 2015; Arjovsky et al., 2017), and stabilising
GANs learning still remains an open problem.
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After GANs, another class of contrastive SSLmethods have emerged, based on the prin-
ciple of maximising the mutual information between two representations of the same
data, in possibly different views, by two separate DNNs. Oord et al. (2018) designed the
noise contrastive estimation of mutual information loss called InfoNCE, which max-
imises a lower bound of the mutual information, based on the noise-contrastive estima-
tion (Gutmann and Hyvärinen, 2010). InfoNCE is a popular objective for contrastive
SSL, and is used by many famous works in computer vision such as Deep InfoMax
(DIM, Hjelm et al., 2019), Momentum Contrast (MoCo, He et al., 2020) and SimCLR
(Chen et al., 2020). All those works generate positive pairs (i.e., similar datapoints)
by manually applying small augmentations to the datapoints, especially with SimCLR
showing the importance of using appropriate augmentations, large batch sizes and
non-trivial negative pairs (for example, images that look very similar but have different
labels) in building successful contrastive SSL methods.

The above contrastive SSL works are prone to information collapse, in which the two
networks ignore the input data and only produce identical and constant output vec-
tors. In order to prevent information collapse, those works rely on large batch sizes
or memory banks, and extensive searches of appropriate augmentations and mining
functions for retrieving negative pairs, and tend to be very costly. Recently, there
emerged an alternative class of collapse prevention methods by maximising the infor-
mation contents within the representations, including Barlow Twins (Zbontar et al.,
2021) and Variance-Invariance-Covariance Regularisation (VICReg, Bardes et al., 2022).
These works providemore principled collapse prevention by decorrelating the features
within the embedding vectors, and forcing the representations of the samples within
a batch to be different. By doing so, they implicitly maximise the information content
within the representation vectors. Barlow Twins and VICReg are the core references
for this project, and will be described in detail in the following subsections.

However, applying handcrafted augmentations to the trainingdata introduces arbitrary
human knowledge not provided by the training data, and deviates the data from real-
word distributions. Therefore, it is highly desired to build a principled contrastive SSL
framework without the need for handcrafted augmentations, which is tackled by this
project.

3.1.1 Barlow Twins: Self-Supervised Learning via Redundancy
Reduction

In Barlow Twins, for a given input batchX of sizeNb, two batches of distorted views X̃A

and X̃B of X are obtained via data augmentation. The two batches of distorted views
X̃A and X̃B are then fed into two separate DNNs, producing batches of d-dimensional
embeddings HA and HB respectively. To simplify notations, the features in both HA

and HB are assumed to have zero mean over the batch. Barlow Twins then computes
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the cross-correlation matrix betweenHA and HB along the batch dimension:

Cij =

∑Nb

b (HA)bi(HB)bj√∑Nb

b

(
(HA)bi

)2√∑Nb

b

(
(HB)bj

)2 (3.1)

where b indexes batch samples and i, j index the features of the embeddings. This is
equivalent to the following matrix operation:

C =

(
HA√
(HA)2

)>(
HB√
(HB)2

)
=

1

Nb

(
HA

std(HA)

)>(
HB

std(HB)

)
(3.2)

The cross-correlation matrix C is a square matrix with the same dimensionality as the
output embeddings, and values between -1 (perfect anti-correlation) and 1 (perfect cor-
relation). BarlowTwins then applies the following loss function on the cross-correlation
matrix:

LBT =
d∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+λ
d∑
i

d∑
j 6=i

C2
ij︸ ︷︷ ︸

redundancy reduction term

(3.3)

The invariance term of the Barlow Twins loss enforces the two output embeddings
to be similar, by pushing the on-diagonal elements of the cross-correlation matrix
towards 1. The redundancy reduction term tries to make the off-diagonal elements of
the cross-correlation matrix closer to 0, and hence decorrelates the different features
of the embeddings, so that the embeddings contain non-redundant information about
the data.

Usually, the two DNNs in Barlow Twins are identical. However, in this project, two
different DNNs are used. Although the authors of Barlow Twins notice a decrease
in performance when introducing asymmetries into Barlow Twins, this project can
still successfully discriminate different GNNs by their expressivity, though a modified
objective function from Barlow Twins (details discussed in later chapters).

3.1.2 VICReg: Self-Supervised Learning via Variance-Invariance-
Covariance Regularisation

Similar to Barlow Twins, VICReg is built based on the principle of preserving the
information content of the representations. The architecture of VICReg is the same as
Barlow Twins, except that it uses three regularisation terms in its objective function
(using the same notations as in the previous subsection):
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• Variance regularisation: a hinge loss to maintain the standard deviation of the
embeddings along the batch dimension close to 1:

Var(H) =
1

d

d∑
i

max
(
0, 1− std(H:,i)

)
(3.4)

This term forces the output embeddings within a batch to be different.

• Invariance regularisation: the mean square Euclidean distance between the out-
put embeddings:

Inv(HA,HB) =
1

Nb

Nb∑
b

∥∥(hA)b − (hB)b
∥∥2
2

(3.5)

• Covariance regularisation: a term that attracts the covariances between every
pair of features of the embeddings over a batch towards 0: define the covariance
matrix of mean-centred embeddingsH as

C(H) =
1

Nb − 1
H>H (3.6)

Then, inspired byBarlowTwins, the covariance regularisation term can be defined
as the sum of the squared off-diagonal elements of the covariance matrix, with a
factor 1

d
to scale the term as a function of the feature dimension:

Cov(H) =
1

d

d∑
i

d∑
j 6=i

C(H)2ij (3.7)

This termdecorrelates the different features of the embeddings, and thus prevents
them from encoding similar information.

The overall loss function for VICReg is a weighted sum of the invariance, variance and
covariance regularisation terms:

LVICReg = λ Inv(HA,HB)︸ ︷︷ ︸
LInv

+µ
(
Var(HA) + Var(HB)

)︸ ︷︷ ︸
LVar

+ν
(
Cov(HA) + Cov(HB)

)︸ ︷︷ ︸
LCov

(3.8)

where λ, µ, ν > 0 are hyperparameters controlling the importance of each term in the
loss. In this project, the invariance regularisation term of VICReg has other substitutes,
and the variance regularisation term is not needed, because increasing the variance
of the embeddings over a batch can potentially make the training unstable. The co-
variance regularisation term is very valuable to this project, as it helps strengthen the
decorrelation of different features by combining with the redundancy reduction term
in Barlow Twins. Details of how VICReg is incorporated in this project are explained
in future chapters.
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3.2 Contrastive Self-Supervised Learning on Graphs

SSL on graphs has attracted a lot of attention in recent years, and there has been a
trend to extend the success of SSL on non-graph tasks to graph-structured data. Xie
et al. (2022) provided a complete review of SSL works for GNNs up to its publication
date. Amongst the SSL works on graphs, only the contrastive learning methods are
relevant to this project. Here I reiterate that, as the core target for this project is to
build task-agnostic evaluation of GNNs using SSL, the performances of the existing
SSL works on downstream tasks are not relevant to this project.

Veličković et al. (2019) developed Deep Graph Infomax (DGI), a node-level SSLmethod
on graphs, by adapting the ideas from DIM to the graph domain. Sun et al. (2020) then
extendedDIM to graph-level representations and proposed InfoGraph. Their successes
inspired many works on contrastive SSL on graphs by applying augmentations to
graphs followed by mutual information maximisation, with varying augmentation
strategies and mutual information estimators.

Applying augmentations to graphs can be much harder than on images, because there
exists no universal augmentation that works across all types of graphs. Besides, graphs
are not invariant to noise like images, and even a small alternation on a graph can signif-
icantly change its topological structure, especially for small graphs such as molecules.
Graph Contrastive Learning (GraphCL, You et al., 2020) responds to this by conducting
a complete evaluation of augmentations on graphs in a comprehensive framework. An
extension work on GraphCL (You et al., 2021) proposes a unified bilevel optimization
framework to automate the augmentation selection processwhen performingGraphCL
on specific graph-structured data. The current best-performing contrastive SSL work
on molecular graphs is GraphLoG (Xu et al., 2021), which introduces hierarchical pro-
totypes to capture the global semantic clusters, in addition to preserving the local
similarities between positive pairs.

However, although the above works have developed fine-grained augmentations on
graphs, it is still almost impossible for them to apply augmentations while preserving
the graph’s intrinsic properties, such as the chemical properties of molecules. There-
fore, it is even more desired in the graph domain to build a principled contrastive
SSL framework without handcrafted augmentations. 3D Infomax (Stärk et al., 2021)
proposes such a framework by maximising the mutual information between the em-
bedding of a 2D molecular graph and the embedding capturing its 3D information,
produced by two separate GNNs. However, 3D Infomax specifically relies on the phys-
ical properties of molecules, and cannot be generalised to other domains. This project
is the first ever to develop a contrastive self-supervised framework that does not require
augmentations across a diversity of graph types, which possesses a high novelty in this
area.
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Chapter 4

Design and Implementation

4.1 Proposed Frameworks

In this project, I designed and implemented GraphAC (Graph Adversarial Collabo-
ration), a conceptually novel, principled, and task-agnostic framework for evaluating
GNNs in a self-supervised, adversarial collaboration manner, without the need of
handcrafted augmentations. The intuition behind GraphAC is to have different GNNs
competing against each other on the same unlabelled graphs, and make the more ex-
pressive GNNs to producemore complex and informative graph embeddings. This can
be measured by the ability to predict other GNNs’ graph embeddings from a GNN’s
own graph embeddings: if a GNN can predict another GNN’s graph embeddings from
its own graph embeddings better than the other way round, then its graph embeddings
can be deemed more complex and informative than the other GNN’s graph embed-
dings, and therefore, it can also be deemed more expressive than the other GNN. The
main challenge for this project is to design a learning framework that maximises the
performance differences between different GNNs, while ensuring stable training at the
same time.

4.1.1 Contestant-Judge Framework: GNNs + MLPs

Initially, I designed GraphAC as a contestant-judge framework: it consists of two
GNN-MLP pairs, in which the GNNs act as the contestants that produce embeddings
for unlabelled graphs, and the MLPs act as the judges that evaluate the produced
graph embeddings. During training, in each iteration, for the same unlabelled graph,
each GNN produces a graph embedding. Then, its corresponding MLP in the GNN-
MLP pair is trained to predict the other GNN’s graph embedding from its own graph
embedding, obtaining a loss value. The GNN then updates its weights and seeks to
maximise the weighted difference between the opponent’s prediction loss and its own
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Figure 4.1: Architecture of the contestant-judge framework

prediction loss. At the end of training, the GNN-MLP pair with the lower prediction
loss wins, and the GNN in that pair can be deemed more expressive.

Formally, let (GNNA,MLPA) and (GNNB,MLPB) be two GNN-MLP pairs. For each
graph-structured input (X,E,A), let

• hA be the output graph embedding by GNNA;

• hB be the output graph embedding by GNNB;

• ĥB be the prediction of hB by MLPA from hA, with prediction loss LAB; and

• ĥA be the prediction of hA by MLPB from hB, with prediction loss LBA.

Then the loss functions of the models are defined as follows:

LMLPA
= LAB = MSE(hB, ĥB)

LMLPB
= LBA = MSE(hA, ĥA)

LGNNA
= LAB − λLBA

LGNNB
= LBA − λLAB

(4.1)

where λ > 0 is a weighting coefficient. If λ = 1, the GNNs are set to make equal
effort to predict the other GNNs’ graph embeddings (collaboration) and to prevent the
other GNNs from predicting their own graph embeddings (competition). If λ < 1, the
GNNs are set to prioritise on collaboration. If λ > 1, the GNNs are set to prioritise on
competition. The value of λ must be carefully chosen to obtain meaningful training
outcome: if λ is too small, the GNNs will only mimic other GNNs and may even aim
at producing trivial and constant graph embeddings; if λ is too large, the GNNs will
bypass the training target by producing random embeddings or randomly permuting
the entries of its output graph embeddings. In both cases, the GNNs will not try to
learn useful information from the graphs. The architecture of such a contestant-judge
framework is illustrated in Figure 4.1. For fair competition, the MLPs should share the
same structure, but not necessarily with the same weights, and both LGNNA

and LGNNB

should have the same λ value.
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During the experiments, it is observed that the GNNs in this contestant-judge frame-
work may try to bypass the training targets by blindly enlarging the entries of their
output graph embeddings without learning from the graph information, causing un-
stable and fruitless training. In order to stabilise training, I attempted to add aweighted
Barlow Twins term and a covariance regularisation term from VICReg in the above loss
functions. I include Barlow Twins in my loss functions because its invariance term
forces hA and hB to be similar, and within the context of this framework, its redun-
dancy reduction termdecorrelates different feature dimensions between the two output
graph embedding, and hence forces the two GNNs to capture the graph information
independently, without copying from the other GNNs’ output. I include the covariance
regularisation term from VICReg in my loss functions because it decorrelates different
feature dimensions within each output graph embeddings, and forces the graph em-
beddings to be fully used to capture graph information. The invariance regularisation
term from VICReg is not included in my loss functions, because the effect of the invari-
ance regularisation term has already been achieved by the MSE loss and the invariance
term from Barlow Twins. I also do not include the variance regularisation term from
VICReg in my loss functions, because it forces the variance of the embeddings over a
batch to be above a given threshold, which can potentially cause the training to be even
more unstable. The detailed explanations of the effects of different terms in Barlow
Twins and VICReg are described in Section 3.1. Adding the Barlow Twins and VICReg
covariance regularisation terms yields the adjusted loss functions as follows:

LMLPA
= LAB = MSE(hB, ĥB)

LMLPB
= LBA = MSE(hA, ĥA)

LGNNA
= α(LAB − λLBA) + βLBT + γLCov

LGNNB
= α(LBA − λLAB) + βLBT + γLCov

(4.2)

where α, β, γ > 0 are weighting coefficients, and LBT,LCov are the Barlow Twins and
VICReg covariance regularisation terms defined in Section 3.1. The loss functions de-
fined by Equation (4.1), which do not contain the Barlow Twins and VICReg covariance
regularisation terms, can also be expressed by the above loss functions by setting α = 1

and β = γ = 0.

4.1.2 Competitive Barlow Twins

Despite that various optimisation methods have been tried during the experiments,
it still shows that the contestant-judge framework described in the previous section
suffers from unstable training (further details are described in Sections 4.3.2 and 5.2.1).
Therefore, I designed another learning framework, which proved to be the final success-
ful learning framework for GraphAC. The new framework does not need MLP judges
to explicitly predict between the GNNs’ output graph embeddings. Instead, it uses a
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novel pair of loss functions modified from the Barlow Twins described in Section 3.1.1,
which I call the competitive Barlow Twins.

A deeper analysis of the Barlow Twins shows that, according to Equation (3.1) defined
in Section 3.1.1,

Cij =

∑Nb

b (HA)bi(HB)bj√∑Nb

b

(
(HA)bi

)2√∑Nb

b

(
(HB)bj

)2 (3.1)

the (i, j)-th entry Cij of the cross-correlation matrix represents how much feature i of
the first model’s output embeddings hA correlates to feature j of the second model’s
output embeddings hB. Therefore, for output embeddings of dimensionality d, the
rowCi,[i+1:d] at the upper-triangle of the cross-correlation matrix represents howmuch
feature i of hA correlates to features i+ 1 to d of hB. For i close to 1, the row Ci,[i+1:d] in
the upper-triangle becomes much longer, and thus the i-th feature of hA represented
by that piece of the row correlates to the majority of the features of hB. For i close to
d, the row at the upper-triangle becomes much shorter, and thus the i-th feature of hA
represented by that piece of the row correlates to very few features of hB. This means
that the smaller-indexed features of the first model’s output embeddings hA become
themore important features, if monitored by the upper-triangle of the cross-correlation
matrix. Similarly, in the lower-triangle of the cross-correlation matrix, the column
C[j+1:d],j represents how much feature j of hB correlates to features j + 1 to d of hA,
making the smaller-indexed features of the second model’s output embeddings also
becoming themore important features. It can therefore be hypothesised that under this
upper-lower-triangle setting, the first few features of both models’ output embeddings
are targeted at capturing the low frequency signals as they are easier to predict, and the
later features are set to capture the high frequency signals, which are harder to predict.

Based on the above findings, if the two triangles of the cross-correlation matrix are
summed, then the sum of each triangle is dominated by the first few rows/columns, as
they contain the most entries. Therefore, the sum of the triangle provides a measure
of how much a model’s output features correlate to the other model’s output features,
weighted by importance, since there are more elements in the triangle corresponding
to the more important features. Consequently, a larger sum implies a better correlation
of a model’s most important features in its output embeddings with the other model’s
output features, which implies a stronger ability to predict the other model’s output
embeddings from its own output embeddings. This naturally yields the definition of
the competitive Barlow Twins loss, which preserves the invariance term in the original
BarlowTwins, but replaces the off-diagonal sumwith the difference between the upper-
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matrix

Figure 4.2: Architecture of the competitive Barlow-Twins framework

triangle and the lower-triangle of the cross-correlation matrix:
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(
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i

d∑
j>i

C2
ij

) (4.3)

where λ, µ > 0 are weighting coefficients, with λ inherited from the original Barlow
Twins, and µ trading off the importance of correlating the opponent GNN’s output fea-
tures (collaboration) and preventing the opponent GNN from correlating the GNN’s
own output features (competition). Although the above reasoning discourages the use
of different weights on the sums of triangles, which is also confirmed by the hyperpa-
rameter tuning results described in Section 5.2.2, I still include µ in my definition of the
competitive Barlow Twins for the purpose of hyperparameter tuning.

Another important enhancement by the competitive Barlow Twins is that, since the
triangles make the smaller-indexed features of both models’ output embeddings the
more important features, both models’ output embeddings are ordered by feature
importance. This ordering prevents the models from simply permuting the entries
of their output embeddings to avoid being predicted by their opponent models, and
makes the training much more stable.

The architecture of the competitive Barlow Twins framework is illustrated in Figure 4.2.
For the similar reasons in the contestant-judge framework, I also include a covariance
regularisation term from VICReg in the final loss functions for the GNNs, obtaining
the following definitions:

LGNNA
= αLCompetitiveBTA + βLCov

LGNNB
= αLCompetitiveBTB + βLCov

(4.4)

where α, β > 0 are weighting coefficients, and LCov is the VICReg covariance regular-
isation term defined in Section 3.1.2. Although the competitive Barlow Twins losses
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can enable stable training of the models, and can counter the instability caused by the
VICReg variance regularisation term, I still do not include the variance regularisation
term in the loss functions, because it is used to prevent the models from producing
the same embedding vectors for samples within a batch, which did not occur in this
framework.

4.2 Datasets

Wu et al. (2018), Dwivedi et al. (2020) and Hu et al. (2020) proposed a range of datasets
across different artificial and real-world tasks, which have nowbecomewidely accepted
benchmarks in the GNN community. They have demonstrated that the appropriate
graph datasets that are able to statistically distinguish the performance of GNNs need
to be representative, realistic and large-scale. This guides me to set the following
requirements for the datasets to be used for GraphAC:

• the datasets should be application-oriented with real-word implications, in order
for GraphAC to provide the most realistic evaluations of the GNNs;

• the datasets should be large-scale of high quality, in order for GraphAC to dis-
criminate between GNNs with statistical significance;

• since GraphAC is designed for graph-level prediction, the datasets should also
be constructed graph-level prediction, which means that the datasets should
contain a large number of relatively small graphs, as if the sizes of the graphs are
too large, it would be very computationally resource-heavy for the project, and
require extensive GPU resources;

• the datasets should provide both node and edge features for the graphs, in order
for GraphAC to support GNNs both with and without edge features, and allow
it to study the effect for a GNN to include the edge features.

Based on the above requirements, the drug-like small molecular datasets are the most
suitable datasets for GraphAC, with the following reasons:

• molecules can naturally be represented as graphs;

• molecular property prediction is a fundamental task within many important
applications in chemistry;

• there is a vast variety ofmolecules in theworld, and the drug-like small molecular
graphs can be trained efficiently without requiring extensive GPU resources.

Therefore, the following widely acknowledged molecular datasets are selected for
GraphAC:
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OGB graph property prediction The Open Graph Benchmark (OGB, Hu et al., 2020)
library provides the following datasets for graph-level prediction, as listed in Table 4.1:

Table 4.1: Statistics of the OGB graph property prediction datasets

Name #Graphs Avg. #nodes Avg #edges Avg. node Graph type
per graph per graph degree

ogbg-molhiv 41,127 25.5 27.5 2.2 Molecule
ogbg-molpcba 437,929 26.0 28.1 2.2 Molecule
ogbg-ppa 158,100 243.4 2266.1 18.3 Protein
ogbg-code2 452,741 125.2 124.2 2.0 Syntax tree

Among those datasets, the ogbg-molpcba dataset is the most suitable dataset for
GraphAC, because it is the largest molecular dataset provided by OGB that is
not a part of the large-scale challenge (OGB-LSC, Hu et al., 2021). Although the
ogbg-code2 dataset contains slightly more graphs than ogbg-molpcba, the graphs in
the ogbg-molpcba dataset generally have a smaller size, which is already adequate for
GraphAC evaluations, and can enable efficient training. The ogbg-molpcba dataset
is used by GraphAC for all GNN evaluation experiments, which are elaborated in
Chapter 5.

ZINC ZINC (Irwin et al., 2012) is one of themost popular real-worldmolecular dataset
of 249,456 drug-like molecules with 28 atom (node) types and 4 bond (edge) types, and
its graphs have sizes ranging from 6 to 38 nodes. The average number of nodes in the
graphs of the ZINC dataset is 23.2, and the average number of edges is 49.8. The ZINC
dataset is split into 220,011 train, 24,445 validation and 5,000 test graphs. The task of the
ZINC dataset is to regress a molecular property known as the constrained solubility.
The ZINC dataset is used by GraphAC for fine-tuning, as an optional extension for this
project.

4.3 Implementation

4.3.1 Starting Point

The source code of GraphAC is developed on top of the 3D Infomax repository by Stärk
et al. (2021)1, which provides a comprehensive implementation of different GNNs, a
flexible training environmentwith necessary utility functions such as losses and visual-
isations, and a thorough configuration setup that enables large-scale training in parallel.
All frameworks and experiments are implemented using PyTorch (Paszke et al., 2019),
and PyTorch Geometric (PyG, Fey and Lenssen, 2019) and Deep Graph Library (DGL,

1https://github.com/HannesStark/3DInfomax
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Wang et al., 2019) are used as the deep graph representation learning libraries for
this project. The OGB datasets are directly adopted from the OGB library, and the
implementation of the ZINC dataset is based on Dwivedi et al. (2020)’s source code
repository.2 All relevant licence requirements of the imported open-source libraries
have been carefully observed. The source code for this project is publicly available at
https://github.com/VictorZXY/GraphAC.

4.3.2 Contestant-Judge Framework

The core pseudocode in a PyTorch style for the contestant-judge framework is shown in
Algorithm2. The experiments show that if bothGNNs are updated every iteration, they
would both try to update their output graph embeddings to respond to the opponents’
graph embeddings produced in the immediate preceding iteration, causing the training
to be unstable. In order to stabilise training, in each iteration, I only update one of the
GNNs so that it can fit its opponent’s output graph embeddings without disturbance,
and switch the GNNs every fixed iterations. This is inspired by the deep Q-network
(DQN, Mnih et al., 2015) which includes a target network that is only periodically
updated to improve stability. The weights of the MLPs are not frozen, because they
need to update their weights in accordance with the new output graph embeddings of
their corresponding GNNs. The PyTorch-style pseudocode for this periodic training
paradigm is shown inAlgorithm1 inAppendix B.1. Various additional techniques have
also been used in the actual implementation to stabilise training, such as normalising
the output embeddings by both the GNNs and MLPs, and gradient clipping. These
techniques are not included in the pseudocode, as they are not a part of the core learning
algorithm.

4.3.3 Competitive Barlow Twins

The PyTorch-style pseudocode for the competitive Barlow Twins framework is shown
in Algorithm 3 in Appendix B.2. Unlike the contestant-judge framework, the GNNs
in the competitive Barlow Twins framwork are not required to explicitly predict the
other GNNs’ output graph embeddings. Therefore, there is no need to freeze one
of the GNNs and switch between GNNs every fixed intervals like in the contestant-
judge framework. Besides, since the pair of competitive Barlow Twins losses involve
subtractions between the triangle elements on opposite sides, periodically freezing
one of the GNNs during training is inappropriate for the competitive Barlow Twins
setup as this would break the symmetry. Gradient clipping can still be included as a
technique for stabilising training, but there is no need to normalise the GNNs’ output
graph embeddings, as they are already normalised in the computations of competitive
Barlow Twins and VICReg covariance regularisation.

2https://github.com/graphdeeplearning/benchmarking-gnns
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Chapter 5

Experiments and Evaluation

5.1 Experimental Setup

The experiments and evaluations of GraphAC were conducted on two different ma-
chines. Developments, unit testing and small-scale trial experiments were carried out
on my personal laptop, which is a Microsoft Surface Book 2 that has an Intel Core
i7-8650U 4-core CPU @ 1.90GHz, 16GB RAM, 256GB SSD, and an NVIDIA GeForce
GTX 1060 GPU with 6GB graphics memory. It runs Windows 11 with Ubuntu 20.04 on
Windows Subsystem for Linux (WSL). Full-scale training and experiments were carried
out on theWilkes3 clusters of the Cambridge Service for DataDrivenDiscovery (CSD3),
which contains two AMD EPYC 7763 64-core CPUs @ 1.8GHz, 1000GB RAM, 1.04TB
disk quota, four NVIDIA A100 SXM GPUs each with 80GB graphics memory in each
node, but only one CPU core and one GPU were used for each experiment. Scientific
Linux 7 is run on CSD3. CUDA 11.4 is installed on both my personal laptop and CSD3.
All reports of training time in this chapter refer to the experiments on CSD3.

5.2 Hyperparameter Tuning

In order to validate the two proposed frameworks for GraphAC and find the optimal
hyperparameter settings for them, I conducted hyperparameter tuning experiments
in a grid-search manner on each framework. All experiments were trained on the
ogbg-molpcba dataset for 50 epochs. After a few preliminary experiments, I decided to
use a batch size of 512 for training, which works much better than smaller batch sizes
such as 256 or 128. Adam was used as the optimiser for all experiments. On both sets
of hyperparameter tuning experiments, a 10-layer PNA with 256 hidden dimensions,
and a 10-layer PNA with 128 hidden dimensions, were used as the pair of competing
GNNs. Both PNAs use [max, mean, sum] as their aggregators, [identity, amplification,
attenuation] as their scalers, and their message passing functions are parametrised by
2-layer MLPs. The output dimensionality is set to 256 for all experiments.
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5.2.1 Contestant-Judge Framework

Hyperparameter tuning of the contestant-judge framework was focused on the weight-
ing coefficients of different loss terms. For simplicity, the Barlow Twins (LBT) and
VICReg covariance regularisation (LCov) terms are set to share the same weights, and
the weight of the MLP prediction loss (LMLPA

and LMLPB
) term is set to 1, which means

α = 1 and β = γ in Equation (4.2). Since the trial experiments have shown that the
value of the MLP prediction loss term is greater than the Barlow Twins and VICReg
covariance regularisation terms by an order of 103, the candidate values of β = γ are
set to be 0 (i.e., do not include LBT and LCov), 1, 10, 102, 103 and 104. In order to trade-
off between collaboration (i.e., predicting the other GNNs’ graph embeddings) and
competition (i.e., preventing the other GNNs from predicting the GNNs’ own graph
embeddings), the λ in Equation (4.2) is set to take value from 0.1, 0.2, 0.5, 1 and 2. Both
MLP judges are 2-layer MLPs with dimensionality of 256 in each layer, and all models
are trained with a learning rate of 8× 10−5.

The results show that λ = 0.5 is the optimal value for trading-off between collaboration
and competition, and increasing the weight for Barlow Twins and VICReg covariance
regularisation terms can indeed help stabilising training. However, even with the
largest weighting coefficient value (i.e., β = γ = 104), the contestant-judge framework
still suffers from unstable training. This is most likely due to the non-convergence in
simultaneous gradient descent on two pairs of models. This claim is supported by the
learning curve of the two GNNs’ loss difference shown in Figure 5.1. The plot of the
explained variance in the principal component analysis (PCA) of the stronger GNN’s
output embeddings in Figure 5.1 also indicates that information collapse has occurred
during training, since the entire output embeddings can be explained by less than 4
variables. Therefore, the contestant-judge framework is not satisfactory enough for the
goal of this project, and requires more delicate design for its architecture and losses.
This justifies the need for the competitive Barlow Twins framework.
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Figure 5.1: Learning curves of LGNNA
− LGNNB

(left) and PCA explained variance of
the stronger GNN’s output embeddings (right) under the contestant-judge framework.
The hyperparameter settings in this example is λ = 0.5 and β = γ = 0.
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5.2.2 Competitive Barlow Twins

Hyperparameter tuning of the competitive BarlowTwins frameworkwas focused on the
weighting coefficients of the sums of the two triangles, and the learning rates. Again, for
simplicity, the competitive Barlow Twins and VICReg covariance regularisation terms
are set to share the sameweights (i.e., α = β = 1 in Equation (4.4)), and the value of λ in
Equation (4.3) adopts the hyperparameter tuning results in the original Barlow Twins
paper (Zbontar et al., 2021), which is 5 × 10−3. The hyperparameter search space and
the final values selected for the competitive Barlow Twins framework are specified in
Table 5.1:

Table 5.1: Hyperparameters searched for the competitive Barlow Twins framework.
Bold indicate the final selections.

Hyperparameter Search space

Weighting coefficient of the triangle (µ) [0.1, 0.2, 0.5, 1, 2]
Learning rate [1× 10−5, 5× 10−5, 2× 10−4]

The results show that the competitive Barlow Twins framework can indeed distinguish
the two GNNs with stable training, and can ensure that the more expressive GNN
always has a lower loss. I also noted that hyperparameter tuning was much less critical
for the competitive Barlow Twins framework compared to the contestant-judge frame-
work, since the training was generally much more stable. An example learning curve
of the loss difference of the two GNNs is shown in Figure 5.2. The PCA explained
variance plot in Figure 5.2 also suggests that the competitive Barlow Twins frame-
work can successfully avoid information collapse. Therefore, the competitive Barlow
Twins framework satisfies the goal of this project, and can be used in GraphAC for the
following evaluation experiments.
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Figure 5.2: Learning curves of the loss differences (left) and PCA explained variance
of the stronger GNN’s output embeddings (right) under the competitive Barlow Twins
framework. The hyperparameter settings in this example is µ = 1 and lr = 5× 10−5.
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5.3 Experiments

After the hyperparameter tuning experiments, the competitive Barlow Twins is chosen
as the framework for GraphAC, and a series of experiments was conducted to examine
GraphAC’s performance in distinguishing different GNNs. In order to fairly compare
the GNNs as well as to evaluate GraphAC’s ability in distinguishing different compo-
nents of a GNN, the experiments were split into five groups of controlled experiments.
In each group, one component of the GNN is varied, while all other components of the
GNN are fixed. The five aspects of a GNN evaluated by GraphAC are as follows:

• Number of GNN layers: in this group of experiments, PNAs with different num-
bers of layers are inserted into GraphAC for competitions. All other hyperpa-
rameters of the PNAs, including hidden dimensions and aggregators, are kept
identical.

• Hidden dimensions: in this group of experiments, PNAswith different hidden di-
mensions are inserted into GraphAC for competitions. All other hyperparameters
of the PNAs, including the number of layers and aggregators, are kept identical.

• Aggregators: in this group of experiments, PNAs with different aggregators are
inserted into GraphAC for competitions. All other hyperparameters of the PNAs,
including the number of layers and hidden dimensions, are kept identical.

• GNNarchitectures: in this groupof experiments, PNA,GINandGCNare inserted
into GraphAC for competitions. The number of layers and hidden dimensions of
the three types of GNNs are kept identical, in order to make their structures as
similar as possible.

• Edge features: in this group of experiments, PNAs with the same structure,
but one including the edge features and the other without the edge features,
are inserted into GraphAC for competitions. This experiment is repeated with
varying numbers of layers and hidden dimensions of the PNAs.

As an optional extension, I also selected some of thewinning GNNs in the experiments,
and fine-tuned them on the ZINC dataset, to test whether GraphAC can even make the
GNNs produce representations that are useful for the downstream tasks, in addition
to evaluating different GNNs. It should be noted that, since GraphAC is built for task-
agnostic evaluations of the GNNs, the performance of GraphAC on fine-tuning is not a
part of the core goal of this project.

5.4 Evaluation Metrics

Same as the hyperparameter tuning experiments, all experiments were trained on the
ogbg-molpcba dataset, with a batch size of 512, for 50 epochs. For every experimental
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setup listed in theprevious section, I repeated the experiments three timeswithdifferent
random seeds, to obtain a more robust measure of the performance of GraphAC, and
to ensure that the results are not due to random factors. The differences of the losses
of the pairs of GNNs on the validation dataset, averaged over the last 10 epochs across
the three random seeds, are used as the evaluation metrics of GraphAC.

GraphAC is deemed successful if for most of the experiments, GraphAC can distinguish
GNNs of different expressivity, by making the more expressive GNNs to have lower final loss
values than their opponent GNNs, with statistically significant differences.

For the optional extension fine-tuning, the GNNs pre-trained by GraphAC are com-
pared against the baseline GNNs, which have the same structures of the pre-trained
GNNs, but with all weights randomly initialised. The fine-tuning experiments were
conducted on the ZINC dataset, with a batch size of 256, for 50 epochs. The final MAE
is used as the evaluation metric. There is no requirement for the GNNs pre-trained by
GraphAC to outperform the baseline GNNs whatsoever.

5.5 Results

5.5.1 Different Numbers of GNN Layers

In this group of experiments, PNAs with 2, 4, 6, 8, 10 layers compete in the GraphAC
framework on a double round-robin basis, with one extra experiment performed for
each model to compete against itself. All PNAs have a fixed hidden dimensionality of
256, and use [max, mean, sum] as their aggregators. The training took from 1.7 hours
(2-layer PNA vs. 2-layer PNA) to 4.2 hours (10-layer PNA vs. 10-layer PNA). The results
of the experiments, recorded as LGNNA

− LGNNB
, are reported in Table 5.2:

Table 5.2: Loss differences of PNAs (hiddendim= 256, aggregators = [max,mean, sum])
with different numbers of layers, recorded as LGNNA

− LGNNB
. Negative value means

GNNA wins the game, and positive value means GNNB wins the game. Greater abso-
lute value indicates larger gap in expressivity determined by GraphAC. The gradient
from bottom left to upper right clearly indicates that more layers lead to more expres-
sive representations.

#Layers in GNNB

2 4 6 8 10

#Layers
in GNNA

2 -0.094 1.402 1.749 1.883 1.977
4 -1.350 0.078 0.722 0.939 1.345
6 -1.638 -0.914 0.035 0.701 0.845
8 -1.837 -1.411 -0.542 0.010 0.516
10 -1.870 -1.532 -1.177 -0.434 0.063
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The results clearly show that GraphAC can always successfully distinguish GNNs of
different depths, and ensure that deeper GNNs, which are inherently more expressive,
can win the games with lower losses. Furthermore, there is no distinction between
GNNA orGNNB, meaning that for all pairs of experiments, even if the order is switched,
the absolute loss differences still remain roughly equal but only with the sign flipped.
These observations suggest that GraphAC can genuinely distinguish different GNNs,
regardless of their ordering in the framework. In addition, for the experiments with
the same GNNs competing, GraphAC produced loss differences close to 0, which
means that it can also allow GNNs with the same expressivity to tie, instead of falsely
deciding a winner. Another delightful observation is that, for every three GNNs
GNNA, GNNB and GNNC in the experiments, if their expressivity can be ordered as
GNNA > GNNB > GNNC , then there is also |LGNNA

− LGNNC
| > |LGNNA

− LGNNB
|

produced by GraphAC. This shows that GraphAC is highly likely to be able to produce
a total ordering of all GNNs, which further enhances its credibility in evaluatingGNNs.

5.5.2 Different Hidden Dimensions

In this group of experiments, 4-layer PNAs with hidden dimensionalities of 16, 32,
64, 128, 256 compete in the GraphAC framework on a double round-robin basis, also
with one extra experiment performed for each model to compete against itself. All
PNAs use [max, mean, sum] as their aggregators. The results of those experiments,
recorded again as LGNNA

−LGNNB
, are reported in Table 5.3. The results agree with all

observations in Section 5.5.1: more expressive GNNs always win the game, regardless
of their orders; same GNNs always tie, with negligible loss differences; if a pair of
GNNs has a wider gap in expressivity than another pair, then their loss difference
is also greater in magnitude. This suggests that GraphAC can genuinely distinguish

Table 5.3: Loss differences of PNAs (num layers = 4, aggregators = [max, mean, sum])
with different hidden dimensions, recorded as LGNNA

−LGNNB
. Negative value means

GNNA wins the game, and positive value means GNNB wins the game. Greater abso-
lute value indicates larger gap in expressivity determined by GraphAC. The gradient
from bottom left to upper right shows a strong correlation between the hidden dimen-
sion of a GNN and it’s ability to win the game.

#Hidden dims in GNNB

16 32 64 128 256

#Hidden dims
in GNNA

16 0.007 1.229 1.964 2.348 2.436
32 -1.249 -0.016 0.985 1.545 2.102
64 -2.034 -0.922 -0.019 1.156 1.870
128 -2.400 -1.671 -1.036 0.092 1.655
256 -2.560 -2.221 -1.931 -1.443 -0.037
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GNNs of different expressivity with respect to the hidden dimensionality, and cross-
validates GraphAC’s reliability.

5.5.3 Different Aggregators

In this group of experiments, four 4-layer PNAs with 64 hidden dimensions, and
[max], [mean], [sum], [max, mean, sum] as their aggregators respectively, are set to
compete in the GraphAC framework on a double round-robin basis, again with one
extra experiment performed for each model to compete against itself. The final loss
differences of those experiments are reported in Table 5.4. Again, the results agree with
all observations in both Sections 5.5.1 and 5.5.2, showing thatGraphAC is also capable of
distinguishing GNNs with different expressivity caused by different aggregators, and
confirms Xu et al. (2019)’s findings that sum > mean > max in terms of expressivity,
and Corso et al. (2020)’s findings that combining multiple aggregators can improve
GNN’s expressivity, compared to using only a single aggregator. However, it should
be noted that the loss differences are not as significant as in the previous experiments.
This is possibly because the effect on expressivity by the aggregators is less significant
than the number of parameters (i.e., number of layers and hidden dimensions).

Table 5.4: Loss differences of PNAs (num layers = 4, hidden dims = 64) with differ-
ent aggregators: {[max], [mean], [sum], [max, mean, sum] (Combined)}, recorded as
LGNNA

−LGNNB
. Negative valuemeansGNNAwins the game, and positive valuemeans

GNNB wins the game. Greater absolute value indicates larger gap in expressivity de-
termined by GraphAC. The gradient from bottom left to upper right clearly indicates
that [max, mean, sum] > sum > mean > max in terms of expressivity.

Aggregators in GNNB

[max] [mean] [sum] Combined

Aggregators
in GNNA

[max] -0.025 0.127 0.322 0.399
[mean] -0.154 -0.011 0.228 0.385
[sum] -0.329 -0.277 -0.034 0.175

Combined -0.342 -0.307 -0.239 -0.019

5.5.4 Different GNN Architectures

In this group of architectures, PNA, GIN and GCN, all with 4 layers and 64 hidden
dimensions, and PNA with [max, mean, sum] as aggregators, are set to compete in the
GraphAC framework on a double round-robin basis, again with one extra experiment
performed for each model to compete against itself. The final loss differences of those
experiments are reported inTable 5.5. Oncemore, the results agreewith all observations
in the previous sections, and further shows that GraphAC is generalisable to otherGNN
types than PNA. It also aligns with the proofs that PNA > GIN > GCN in terms of
expressivity (Xu et al., 2019; Corso et al., 2020).
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It is observed that the differences between architectures are larger than simply changing
the aggregators. This can be due to other subtle differences, such as message passing
framework in PNA compared to convolutions in GCN and GIN, or the added ε term in
GIN compared to GCN.

Table 5.5: Loss differences of PNA, GIN and GCN (num layers = 4, hidden dims = 64,
PNA aggregator = [max, mean, sum]), recorded as LGNNA

− LGNNB
. Negative value

means GNNA wins the game, and positive value means GNNB wins the game. Greater
absolute value indicates larger gap in expressivity determined by GraphAC. The gradi-
ent from bottom left to upper right clearly indicates that sum > mean > max in terms
of expressivity.

GNNB architecture

GCN GIN PNA

GNNA

architecture

GCN -0.091 0.483 0.716
GIN -0.475 -0.053 0.515
PNA -0.652 -0.465 -0.019

5.5.5 Inclusion of Edge Features

In this group of experiments, PNAs with 4, 6, and 8 layers, and hidden dimension-
alities ranging from 64, 128, and 256 are used. All PNAs use [max, mean, sum] as
their aggregators. In each experiment, the same PNA with one including the edge
features of the graphs, and the other removing the edge features, are set to compete
in the GraphAC framework. The loss differences of the experiments, recorded as
LGNN (edge features) − LGNN (no edge features), is reported in Table 5.6. The results show that
GraphAC can correctly reward the GNNs that include edge features. It is observed that
when the number of layers and hidden dimensions are larger, the magnitude of the
loss difference LGNN (edge features) − LGNN (no edge features) becomes smaller. This is possibly
because when a GNN is more complex, it can capture enough information from the
graphs even without the edge features, and the gain in performance by including edge
features becomes relatively smaller.

Table 5.6: Loss differences of PNAs with and without edge features, recorded as
LGNN (edge features) − LGNN (no edge features). The PNAs always use the aggregators = [max,
mean, sum], while the num layers = {4, 6, 8} and hidden dims = {64, 128, 256} are varied.
Negative value means the PNA with edge features wins the game in all experiments,
and greater absolute value indicates larger gap in expressivity determined byGraphAC.

#hidden dimensions

64 128 256

#Layers
4 -0.714 -0.750 -0.671
6 -0.925 -0.558 -0.501
8 -0.792 -0.309 -0.422
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5.5.6 Fine-tuning

For the optional extension of GraphAC, I selected the most complex GNN trained
against various opponent GNNs in the previous experiments, namely PNA with 10
layers and 256 hidden dimensions, and fine-tuned it on the ZINC dataset. I used
a randomly intialised 10-layer PNA with 256 hidden dimensions as the baseline for
comparison. In thefirst scenario, I used theweights of thepre-trainedPNAsas the initial
weights of the fine-tuning task. Since catastrophic forgetting and feature distortion
(Kumar et al., 2022) may occur during fine-tuning task, I tried the same experiment but
using linear probing. In this second scenario, I froze theweights of both the pre-trained
PNAs and the baseline PNA, and only used their output graph embeddings, appended
with a 2-layer MLP with 256 dimensions in each layer as a prediction head, for the
fine-tuning task. Although this is limited in terms of maximal training performance,
it is known to perform better in out-of-distribution settings or in low-data settings by
avoiding to overfitting and catastrophic forgetting (Kumar et al., 2022).

The fine-tuning results, recorded as the MAE loss on ZINC, are reported in Table 5.7.
Unfortunately, all the pre-trained PNAs perform worse than the baseline model on the
fine-tuning task. Here it needs to be re-emphasised that performance on the fine-tuning
tasks is not a part of the core goals for GraphAC. However, I can still harness useful
observations from the the failure pattern: as the fine-tuning results tend to worsen
when the pre-training opponent becomes more complex, I can hypothesise that when
a GNN competes against a more complex GNN in GraphAC, it is pushed to learn more
complex but non-essential information about the graph, and thus decreases its ability
to capture more basic but useful information. This also inspires me into extending
GraphAC into a multi-GNN framework instead of having only two GNNs, so that the
GNNs with different expressivity can capture different levels of information of the
graphs, and create a better overall understanding. In some sense, weaker GNNswould
regularize the stronger ones to learn simpler and more useful information.

Table 5.7: Fine-tuning results of GraphAC on the ZINC dataset, measured by MAE.

Model Opponent MAE on ZINC

Fine-tuning Linear-probing
PNA (10 layers) N/A (baseline) 0.093 0.555
PNA (10 layers) PNA (2 layers) 0.110 0.787
PNA (10 layers) PNA (4 layers) 0.124 0.850
PNA (10 layers) PNA (6 layers) 0.149 0.814
PNA (10 layers) PNA (8 layers) 0.162 0.927
PNA (10 layers) PNA (10 layers) 0.154 0.911
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Chapter 6

Summary and Conclusions

6.1 Accomplishments

In this project, I designed and built GraphAC, a conceptually novel, principled, and
task-agnostic framework for evaluating GNNs through contrastive self-supervision,
without the need of handcrafted augmentations. I designed two different architectures
for GraphAC: a contestant-judge framework that consists of two GNN + MLP pairs,
and a competitive Barlow Twins framework that incorporates a novel objective function
inspired by the Barlow Twins loss (Zbontar et al., 2021), which replaces its redundancy
reduction term with a difference between the upper-triangle and lower-triangle of the
cross-correlation matrix of the two GNN’s output embeddings. The competitive Bar-
low Twins framework successfully distinguishes GNNs of different expressivity in all
experiments, across various aspects including the number of layers, hidden dimen-
sionality, aggregators, GNN architecture and edge features, and ensures that more
expressive GNNs can always win with a statistically significant difference. GraphAC
is also able to estimate the degree of expressiveness of different GNNs, and produce a
total ordering of all GNNswith its measurements. GraphAC has significantly exceeded
its preset success criteria, and brings notable contributions to the graph SSL commu-
nity by providing a novel principle of evaluating GNNs and a stable contrastive SSL
framework without requiring handcrafted augmentations. Therefore, I can claim with
full confidence that this project has been successful.

6.2 Future Work

Future work on GraphAC includes the following directions:

• In order to test GraphAC’s generalisability in other types of graphs, run GraphAC
on datasets outside themolecular domain, or even test its generalisability to other
DNNs, such as CNNs in computer vision;
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• extend GraphAC’s ability to producing informative and transferable represen-
tations for downstream tasks, by including multiple GNNs to simultaneously
compete in the framework, so that the GNNs with different expressivity can cap-
ture different levels of information of the graphs, and create a better overall graph
representations;

• although the contestant-judge frameworkwasunsatisfactory, it still has a potential
to be leveraged, by introducing more delicate design and objective functions, or
even converting it into an actor-critic framework and incorporate reinforcement
learning to it.

47



Bibliography

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial
networks. In Proceedings of the 34th International Conference onMachine Learning (ICML
2017), volume 70, pages 214–223. PMLR.

Bardes, A., Ponce, J., and LeCun, Y. (2022). VICReg: Variance-invariance-covariance
regularization for self-supervised learning. In 10th International Conference on Learning
Representations (ICLR 2022). OpenReview.net.

Bodnar, C., Frasca, F., Otter, N., Wang, Y., Liò, P., Montufar, G. F., and Bronstein, M.
(2021). Weisfeiler and Lehman go cellular: CW networks. In Advances in Neural
Information Processing Systems (NeurIPS 2021), volume 34, pages 2625–2640. Curran
Associates, Inc.

Bronstein, M.M. (2020). Expressive power of graph neural networks and theWeisfeiler-
Lehman test. Towards Data Science, https://towardsdatascience.com/expressive
-power-of-graph-neural-networks-and-the-weisefeiler-lehman-test-b883db

3c7c49.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. (2021). Geometric deep learn-
ing: grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International
Conference on Machine Learning (ICML 2020), volume 119, pages 1597–1607. PMLR.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2014), pages 1724–1734. Association
for Computational Linguistics.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković, P. (2020). Principal neigh-
bourhood aggregation for graph nets. In Advances in Neural Information Processing
Systems (NeurIPS 2020), volume 33, pages 13260–13271. Curran Associates, Inc.

48

https://towardsdatascience.com/expressive-power-of-graph-neural-networks-and-the-weisefeiler-lehman-test-b883db3c7c49
https://towardsdatascience.com/expressive-power-of-graph-neural-networks-and-the-weisefeiler-lehman-test-b883db3c7c49
https://towardsdatascience.com/expressive-power-of-graph-neural-networks-and-the-weisefeiler-lehman-test-b883db3c7c49


Donsker, M. D. and Varadhan, S. R. S. (1983). Asymptotic evaluation of certain Markov
process expectations for large time. IV. Communications on Pure and Applied Mathe-
matics, 36(2):183–212.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., andBresson, X. (2020). Benchmarking
graph neural networks. arXiv preprint arXiv:2003.00982v3.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bresson, X. (2022). Graph
neural networks with learnable structural and positional representations. In 10th
International Conference on Learning Representations (ICLR 2022). OpenReview.net.

Fey, M. and Lenssen, J. E. (2019). Fast graph representation learning with PyTorch
Geometric. In ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds.

Getoor, L. (2005). Link-based classification. In Advanced methods for knowledge discovery
from complex data, pages 189–207. Springer.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural mes-
sage passing for quantum chemistry. In Proceedings of the 34th International Conference
on Machine Learning (ICML 2017), volume 70, pages 1263–1272. PMLR.

Goodfellow, I. J. (2015). On distinguishability criteria for estimating generative models.
In 3rd International Conference on Learning Representations (ICLR 2015), Workshop Track
Proceedings.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neu-
ral Information Processing Systems (NIPS 2014), volume 27, pages 2672–2680. Curran
Associates, Inc.

Gutmann,M. andHyvärinen,A. (2010). Noise-contrastive estimation: Anewestimation
principle for unnormalized statistical models. In Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics (AISTATS 2010), volume 9, pages 297–
304. PMLR.

Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 14(3):1–159. Morgan & Claypool Publishers.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for
unsupervised visual representation learning. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR 2020).

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler,
A., and Bengio, Y. (2019). Learning deep representations by mutual information es-
timation and maximization. In 7th International Conference on Learning Representations
(ICLR 2019). OpenReview.net.

49



Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4(2):251–257.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y., and Leskovec, J. (2021). OGB-LSC: A
large-scale challenge for machine learning on graphs. In 35th Conference on Neural
Information Processing Systems (NeurIPS 2021) Datasets and Benchmarks Track.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec,
J. (2020). Open graph benchmark: Datasets for machine learning on graphs. In
Advances in Neural Information Processing Systems (NeurIPS 2020), volume 33, pages
22118–22133. Curran Associates, Inc.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd International
Conference on Machine Learning (ICML 2015), volume 37, pages 448–456. PMLR.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and Coleman, R. G. (2012).
ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information
and Modeling, 52(7):1757–1768.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations (ICLR 2015).

Kingma, D. P. andWelling, M. (2014). Auto-encoding variational Bayes. In 2nd Interna-
tional Conference on Learning Representations (ICLR 2014).

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convo-
lutional networks. In 5th International Conference on Learning Representations (ICLR
2017). OpenReview.net.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and Tossou, P. (2021). Rethinking
graph transformers with spectral attention. In Advances in Neural Information Pro-
cessing Systems (NeurIPS 2021), volume 34, pages 21618–21629. Curran Associates,
Inc.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86.

Kumar, A., Raghunathan, A., Jones, R. M., Ma, T., and Liang, P. (2022). Fine-tuning can
distort pretrained features andunderperformout-of-distribution. In 10th International
Conference on Learning Representations (ICLR 2022). OpenReview.net.

50



McCallum, A. K., Nigam, K., Rennie, J., and Seymore, K. (2000). Automating the
construction of Internet portalswithmachine learning. InformationRetrieval, 3(2):127–
163.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D.,Wierstra, D., Legg, S., andHassabis, D. (2015).
Human-level control through deep reinforcement learning. Nature, 518(7540):529–
533.

Monti, F., Frasca, F., Eynard, D., Mannion, D., and Bronstein, M. M. (2019). Fake news
detection on social media using geometric deep learning. In ICLR 2019 Workshop on
Representation Learning on Graphs and Manifolds.

Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-GAN: Training generative neural
samplers usingvariational divergenceminimization. InAdvances inNeural Information
Processing Systems (NIPS 2016), volume 29, pages 271–279. Curran Associates, Inc.

Oord, A. v. d., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
PyTorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems (NeurIPS 2019), volume 32, pages 8026–8037.
Curran Associates, Inc.

Sato, R. (2020). A survey on the expressive power of graph neural networks. arXiv
preprint arXiv:2003.04078.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T. (2008).
Collective classification in network data. AI Magazine, 29(3):93.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., et al. (2014). Dropout: a simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(1):1929–1958.

Stärk, H., Beaini, D., Corso, G., Tossou, P., Dallago, C., Günnemann, S., and Liò,
P. (2021). 3D Infomax improves GNNs for molecular property prediction. arXiv
preprint arXiv:2110.04126.

Stokes, J.M., Yang, K., Swanson, K., Jin,W., Cubillos-Ruiz, A., Donghia, N.M.,MacNair,
C. R., French, S., Carfrae, L. A., Bloom-Ackermann, Z., Tran, V. M., Chiappino-Pepe,
A., Badran, A. H., Andrews, I. W., Chory, E. J., Church, G. M., Brown, E. D., Jaakkola,

51



T. S., Barzilay, R., and Collins, J. J. (2020). A deep learning approach to antibiotic
discovery. Cell, 180(4):688–702.

Sun, F., Hoffmann, J., Verma, V., and Tang, J. (2020). InfoGraph: Unsupervised and
semi-supervised graph-level representation learning via mutual information max-
imization. In 8th International Conference on Learning Representations (ICLR 2020).
OpenReview.net.

Veličković, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., and Hjelm, R. D. (2019).
Deep graph infomax. In 7th International Conference on Learning Representations (ICLR
2019). OpenReview.net.

Vinyals, O., Bengio, S., and Kudlur, M. (2016). Order matters: Sequence to sequence for
sets. In 4th International Conference on Learning Representations (ICLR 2016).

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai,
Y., Xiao, T., He, T., Karypis, G., Li, J., and Zhang, Z. (2019). Deep Graph Library: A
graph-centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315.

Weisfeiler, B. and Leman, A. (1968). A reduction of a graph to canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16.
English translation available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_
translation.pdf.

Wu, Z., Ramsundar, B., Feinberg, E., Gomes, J., Geniesse, C., Pappu, A. S., Leswing, K.,
and Pande, V. (2018). MoleculeNet: a benchmark for molecular machine learning.
Chemical Science, 9(2):513–530.

Xie, Y., Xu, Z., Zhang, J., Wang, Z., and Ji, S. (2022). Self-supervised learning of graph
neural networks: A unified review. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural
networks? In 7th International Conference on Learning Representations (ICLR 2019).
OpenReview.net.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and Jegelka, S. (2018). Rep-
resentation learning on graphs with jumping knowledge networks. In Proceedings of
the 35th International Conference on Machine Learning (ICML 2018), volume 80, pages
5453–5462. PMLR.

Xu, M., Wang, H., Ni, B., Guo, H., and Tang, J. (2021). Self-supervised graph-level
representation learning with local and global structure. In Proceedings of the 38th
International Conference on Machine Learning (ICML 2021), volume 139, pages 11548–
11558. PMLR.

52

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf


Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J. (2018).
Graph convolutional neural networks for web-scale recommender systems. In Pro-
ceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining, pages 974–983.

You, Y., Chen, T., Shen, Y., andWang, Z. (2021). Graph contrastive learning automated.
In Proceedings of the 38th International Conference on Machine Learning (ICML 2021),
volume 139, pages 12121–12132. PMLR.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y. (2020). Graph contrastive
learning with augmentations. In Advances in Neural Information Processing Systems
(NeurIPS 2020), volume 33, pages 5812–5823. Curran Associates, Inc.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. (2021). Barlow twins: Self-
supervised learning via redundancy reduction. In Proceedings of the 38th International
Conference on Machine Learning (ICML 2021), volume 139, pages 12310–12320. PMLR.

53



Appendix A

Notations

A.1 Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

I An identity matrix (dimensionality implied by context)

A A scalar random variable

A.2 Indexing

ai Element i of vector a, with indexing starting at 1

Aij Element i, j of matrix A

a[i:j] Sub-vector of a sliced from element i to element j (both included)

A[i1:i2],[j1:j2] Sub-matrix ofA sliced between rows i1 to i2 and columns j1 to j2
A(t) Random variable A at time t

h(l) The output of the l-th layer

A.3 Calculus and Linear Algebra Operations
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

A> Transpose of matrix A

A⊗B Tensor product ofA and B
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A.4 Sets and Functions
A or {·} A set

{{·}} A multiset

R The set of real numbers

G A graph

G A set of graphs

|A| The cardinality of set A

f : A → B The function f with domain A and image B

fθ or f(·;θ) A function parametrised by θ

F A matrix-valued function

L The loss function

φ, ψ, · · · Learnable functions

σ A non-linear activation function⊕
A permutation-invariant operator

Sometimes a function f whose argument is a scalar can be applied to a vector or matrix:
f(x) or f(X). This denotes the application of f to the vector/matrix element-wise. For
example, ifY = f(X), then Yij = f(Xij) for all valid values of i and j.

A.5 Probability

p(A) A probability distribution over a continuous variable

Pr(A) A probability distribution over a discrete variable

PrX(x) The likelihood of random variable X given outcome x

EX [f(X)] Expectation of f(X)with respect to X
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Appendix B

Algorithms

B.1 Contestant-Judge Framework

Algorithm 1 PyTorch-style pseudocode for the periodic training paradigm

# optimiser_steps: optimiser step counter
# iter_per_model: number of iterations for training each GNN

for x in dataloader: # load a batch with N samples
# compute the loss functions
...

# optimisation step for the GNNs
if (optim_steps // iter_per_model) % 2 == 0:

loss_a.backward()
optimiser_gnn_a.step()
optimiser_gnn_a.zero_grad()

else:
loss_b.backward()
optimiser_gnn_b.step()
optimiser_gnn_b.zero_grad()

# optimisation steps for the MLPs
loss_ab.backward()
loss_ba.backward()
optimiser_mlp_a.step()
optimiser_mlp_b.step()
optimiser_mlp_a.zero_grad()
optimiser_mlp_b.zero_grad()

# update optimiser step counter
optimiser_steps += 1
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Algorithm 2 PyTorch-style pseudocode for the contestant-judge framework

# gnn_a, gnn_b: GNN contestant networks
# mlp_a, mlp_b: MLP judge networks
# alpha, beta, gamma, lambd, mu: coefficients of the loss terms
# N: batch size
# d: dimensionality of the embeddings
#
# mse_loss: mean squared error loss function
# diagonal: on-diagonal elements of a matrix
# off_diagonal: off-diagonal elements of a matrix

for x in dataloader: # load a batch with N samples
# compute embeddings and predictions
h_a_out = gnn_a(x) # N x d
h_b_out = gnn_b(x) # N x d
h_b_pred = mlp_a(x) # N x d
h_a_pred = mlp_b(x) # N x d

# prediction losses
loss_ab = mse_loss(h_b_pred, h_b_out)
loss_ba = mse_loss(h_a_pred, h_a_out)
pred_loss_a = loss_ab - lambd * loss_ba
pred_loss_b = loss_ba - lambd * loss_ab

# normalize embeddings along the batch dimension (VICReg)
h_a_out_norm = (h_a_out - h_a_out.mean(dim=0)) # N x d
h_b_out_norm = (h_b_out - h_b_out.mean(dim=0)) # N x d

# covariance matrices
cov_a = (h_a_out_norm.T @ h_a_out_norm) / (N - 1) # d x d
cov_b = (h_b_out_norm.T @ h_b_out_norm) / (N - 1) # d x d

# covariance regularisation loss
cov_loss = off_diagonal(cov_a).pow(2).sum() / d \

+ off_diagonal(cov_b).pow(2).sum() / d

# normalize embeddings along the batch dimension (Barlow Twins)
h_a_out_norm = h_a_out_norm / h_a_out.std(dim=0) # N x d
h_b_out_norm = h_a_out_norm / h_a_out.std(dim=0) # N x d

# cross-correlation matrix
corr = (h_a_out_norm.T @ h_b_out_norm) / N # d x d

# Barlow Twins loss
bt_loss = (diagonal(corr) - 1).pow(2).sum() \

+ mu * off_diagonal(corr).pow(2).sum()

# overall loss functions
loss_a = alpha * pred_loss_a + beta * bt_loss + gamma * cov_loss
loss_b = alpha * pred_loss_b + beta * bt_loss + gamma * cov_loss

# optimisation steps
...
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B.2 Competitive Barlow Twins

Algorithm 3 PyTorch-style pseudocode for the competitive Barlow Twins framework

# gnn_a, gnn_b: GNN encoder networks
# alpha, beta, lambd, mu: coefficients of the loss terms
# N: batch size
# d: dimensionality of the embeddings
#
# diagonal: on-diagonal elements of a matrix
# triu: upper-triangle elements of a matrix
# tril: lower-triangle elements of a matrix

for x in dataloader: # load a batch with N samples
# compute embeddings and predictions
h_a_out = gnn_a(x) # N x d
h_b_out = gnn_b(x) # N x d
h_b_pred = mlp_a(x) # N x d
h_a_pred = mlp_b(x) # N x d

# normalize embeddings along the batch dimension (VICReg)
h_a_out_norm = (h_a_out - h_a_out.mean(dim=0)) # N x d
h_b_out_norm = (h_b_out - h_b_out.mean(dim=0)) # N x d

# covariance matrices
cov_a = (h_a_out_norm.T @ h_a_out_norm) / (N - 1) # d x d
cov_b = (h_b_out_norm.T @ h_b_out_norm) / (N - 1) # d x d

# covariance regularisation loss
cov_loss = off_diagonal(cov_a).pow(2).sum() / d \

+ off_diagonal(cov_b).pow(2).sum() / d

# normalize embeddings along the batch dimension (Barlow Twins)
h_a_out_norm = h_a_out_norm / h_a_out.std(dim=0) # N x d
h_b_out_norm = h_a_out_norm / h_a_out.std(dim=0) # N x d

# cross-correlation matrix
corr = (h_a_out_norm.T @ h_b_out_norm) / N # d x d

# competitive Barlow Twins loss components
on_diagonal = (diagonal(corr) - 1).pow(2).sum()
upper_triangle = triu(corr, diagonal=1).pow(2).sum()
upper_triangle = tril(corr, diagonal=-1).pow(2).sum()

# competitive Barlow Twins losses
loss_a = alpha * (on_diagonal + lambd * (upper_triangle - mu * lower_triangle)) \

+ beta * cov_loss
loss_b = alpha * (on_diagonal + lambd * (lower_triangle - mu * upper_triangle)) \

+ beta * cov_loss

# optimisation steps
loss_a.backward()
loss_b.backward()
optimiser_a.step()
optimiser_b.step()
optimiser_a.zero_grad()
optimiser_b.zero_grad()
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