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3-player Mahjong (Sanma): a more aggressive game style

4-Player Mahjong 3-Player Mahjong
(Sanma)

Win rate 21.9% 29.7%
Discard-loss rate 11.8% 13.6%
Riichi rate 17.3% 24.9%
Average Han 3.19 4.60

Source: Tenhou.net, Houou table
http://tenhou.net/ranking.html http://tenhou.net/sc/prof.html
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Features

Features divided into two categories:
o Tile features (sets or sequences of tiles) can be encoded as one-hot vectors

o Numerical features (e.g. player scores) can be binary-encoded into multiple columns

« |n addition to the triplet/quad tiles and Riichi status, also include the turn number of the
Pon/Kan/Riichi calls

« Leave spaces for Im—9m tiles and the fourth player, for transferability to 4-player Mahjong

 Use a 34X 366 array to represent a state

o 34 kinds of tiles, 366 columns for 22 features
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Use game records from the Houou table (top 0.1% of the ranked players) on Tenhou.net

Training dataset: 50,000 rounds of Sanma game in 2019
Test dataset: 5,000 rounds of Sanma game in 2020

1,033,317 examples for discard
185,052 examples for Pon
41,861 examples for Kan
167,636 examples for Kita
133,949 examples for Riichi
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4-layer CNN structure

Convolutional filter sizes tuned for each action

Enhance major action (discard)’'s model through self-play RL, using REINFORCE
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Results: supervised learning

Gao et al. (2018)

Discard 65.81% 68.8% 76.7%
Pon 70.95% 88.2% 91.9%
Kan 92.45% — 94.0%
Kita 94.26% - -

Riichi 62.63% - 85.7%
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Results: reinforcement learning
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Agents

(vs. Baseline)
Baseline
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Results: reinforcement learning

0.02%
22.00%
22.68%
20.72%
21.80%
73.59%
71.93%
71.61%
72.38%

0.02%
0.06%
0.06%
0.16%
0.09%
0.02%
0.08%
0.06%
0.05%

0.02%
0.08%
0.02%
0.04%
0.05%
3.27%
3.46%
2.85%
3.19%

1st Place Rate | 2"d Place Rate | 3'd Place Rate

99.94%
77.86%
17.24%
79.08%
78.06%
23.12%
24.53%
25.48%
24.38%




Results: reinforcement learning
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