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1 Introduction

Named entity recognition (NER) is an important
information extraction task in natural language pro-
cessing (NLP) which involves automatic identifica-
tion of entities of interest, such as people’s names,
organisations and locations. Current state-of-the-
art NER systems can achieve F1-scores of up to
94.6% on English news texts (Wang et al., 2021a),
where the named entities are fairly standard, well-
formed and highly predictable. However, the di-
verse and noisy nature of user-generated texts as
well as the novel, emerging and rare named entities
make NER in social media much more challeng-
ing, and standard NER systems were not found
to work very well on these tasks. As a compari-
son, current state-of-the-art NER systems on user-
generated texts can only achieve F1-scores of up to
60.45% (Wang et al., 2021b).

This report summarises my work for the L90
final practical 20211, which involves various at-
tempts at NER for the EMNLP 2017 Workshop on
Noisy User-generated Text (W-NUT 2017) shared
task on Novel and Emerging Entity Recognition
(Derczynski et al., 2017) with neural networks
(NNs). In this final practical, I investigated the
NN structure provided by the Colab Notebook, and
performed appropriate data exploration and fea-
ture extraction for the NER task. I have also ex-
plored several data-processing techniques in order
to improve the NN’s performance, namely down-
weighting non-named entity labels, downsampling,
merging named entity labels, and adding part-of-
speech (PoS) embeddings. I evaluated my trained
models on the W-NUT 2017 development and test
sets, using entity precision, recall and F1-score as
evaluation metrics, and compared the performances
of different models. Details of my work done for
this final practical are described as follows.

1Colab Notebook

Train Dev Test
Documents 3,375 993 1,283
Tokens 62,236 15,382 23,323
Entities 1,964 826 1,076
person 655 464 426
location 544 74 150
corporation 221 33 66
product 141 112 127
creative-work 139 105 142
group 264 38 165

Table 1: W-NUT 2017 dataset statistics

2 Data

2.1 Data exploration

The W-NUT 2017 shared task (Derczynski et al.,
2017) contains contexts mined from various social
medias, including Twitter, Reddit, YouTube and
StackExchange. Its datasets are encoded in the
CoNLL format, where sentences are encoded into
multiple rows, each containing the annotation of a
word/token, and different sentences are separated
by empty rows. The tokens are labelled in a ‘BIO’
format, where ‘B’ (beginning) represents the first
word of a named entity, ‘I’ (inside) represents any
other word inside a named entity, and ‘O’ (outside)
represents a non-named entity word. Furthermore,
the named entities are annotated into the following
6 entity types:

1. person
2. location
3. corporation
4. product
5. creative-work
6. group

Table 1 shows the numbers of entities found in
the training, development and test datasets.
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Figure 1: Distributions of the text sequence lengths in the datasets.

2.2 Feature extraction
Since the goal of the task in this final practical is to
maximise the ‘entity’ rather than ‘surface’ perfor-
mance on the W-NUT 2017 shared task (i.e., there
is no need to predict the entity types), I focused on
the ‘BIO only’ labels. Firstly, the tokens, the uni-
versal PoS (UPoS) tags, and the named entity labels
were converted into integers, in order to be fed into
the NNs. Then, the format for the datasets were
converted from one token per row to one entire
text sequence per row, to make them ready for the
inputs to the NN classifiers. Since the dimensions
of the NNs are pre-defined, all text sequences must
carry the same number of tokens, which means all
texts must be padded to the longest sequence in the
training, development and test datasets. However,
this introduces the following problem: while the
average length of the text sequences is 17.86 to-
kens, the longest text sequence is 105 tokens long
in the test set, which is clearly an outlier as shown
in Figure 1. This means that almost all the texts are
padded with a very long sequence of padding to-
kens, which are most likely to be even longer than
the original text, causing the labels of the datasets
to be dominated by the padding label. Finally, in
order to prepare the labels as binary values, I con-
verted the label sequences to a one-hot encoding,
including an extra index for the ‘padding’ label.

3 Neural Network Structure

3.1 Bidirectional LSTM layer
LSTM based networks have been proven effective
in sequence labelling problems for their capability
of balancing both long-term and short-term mem-
ories. In a unidirectional LSTM layer, the hidden
states only take information from the past, which
may be adequate to label an entire sequence (for
example, sentiment analysis), but can lose useful
information when labelling each token. A bidirec-

Figure 2: Structure of a BiLSTM layer.

tional LSTM (BiLSTM) layer enables its hidden
states to capture the information from both the past
and the future contexts, which can be particularly
helpful in labelling a token.

Mathematically, a BiLSTM layer takes a se-
quence of embeddings (feature vectors) for the
tokens of the sequence as its input, denoted as
(x1, · · · ,xn). The output of the BiLSTM layer is
then a sequence of word representations, denoted
as (y1, · · · ,yn). For every word embedding xt

in a given input sequence, two hidden states hf
t

and hb
t are computed from the forward LSTM and

the backward LSTM layers, respectively. The final
output yt is then the concatenation of the forward
hf
t and backward hb

t , as shown in the following
equations:

hf
t = LSTMforward(xt,h

f
t−1)

hb
t = LSTMbackward(xt,h

f
t+1)

yt = hf
t ⊕ hb

t

The structure of a BiLSTM layer is shown in
Figure 2.
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Figure 3: NN structure for the final practical.

3.2 Overall structure

In this final practical, I adopted the default NN
structure provided by the Colab Notebook, which
is a sequential model with an embedding layer with
an embedding size of 128 for computing the word
embeddings, followed by a BiLSTM layer with 50
hidden units, a dropout layer with a dropout rate
of 0.5 for regularisation and to prevent over-fitting,
and finally a dense layer with softmax activation,
as shown in Figure 3. The choice of the output
dimensions is subject to the number of classes the
model is intended to predict, which will be fur-
ther explained in Section 4.3. Besides, the word
embeddings after the embedding layer can also be
concatenated with other feature vectors, effectively
changing the structure of the model, which will
also be elaborated in Section 4.4.

4 Improving Model Performance

Due to the dominant numbers of ‘outside’ and
‘padding’ labels in the training set, the default NN
fails to predict any named entity if not combined
with any optimisation. However, there are serveral
techniques to improve the model’s performance
by applying extra processing on the training data,
without having to change the core structure of the
NN. Multiple techniques can also be applied at the
same time, in order to further improve the model’s
performance.

4.1 Downweighting non-named entity labels

Since the labels in the training set are imbalanced,
it is useful to assign different weights to the la-
bels, and particularly in this case, to downweigh
the non-named entity labels, in order to reduce

Texts B I O Padding
1,222 1,964 1,177 22,152 103,017

Table 2: Label counts of the downsampled training set.

Dataset Texts B-I O Padding
Original 3,375 3,141 59,095 292,139
Downsampled 1,222 3,141 22,152 103,017

Table 3: Label counts of the downsampled training set.

their importances for the NN’s targets. In this fi-
nal practical, I investigated the downweighting of
the ‘outside’ and ‘padding’ labels by multiplying
a downweighting ratio to them in the one-hot en-
coded labels while leaving the named entity labels
(i.e., the ‘beginning’ and ‘inside’ labels) unchanged.
I have experimented different downweighting ra-
tios ranging from 0.1 to 0.9.

4.2 Downsampling

The training set contains a lot of text sequences
that do not contain any named entities. By remov-
ing those text sequences from the training set, I
can effectively perform downsampling on the non-
named entity labels, and reduce the gap between
the numbers of the named entity labels and the non-
named entity labels. However, such downsampling
technique has its limitation: even though all text
sequences without any named entities have been
removed, there are still only a few named entities
in each of the remaining text sequences. Conse-
quently, the downsampled training set is still dom-
inated by the ‘outside’ and ‘padding’ labels (only
less dominant than the original training set without
downsampling), as shown in the label counts in Ta-
ble 2. Downweighting (as aforementioned in Sec-
tion 4.1) can also be applied together with down-
sampling, in order to further improve the model’s
performance.

4.3 Merging B and I labels

In the W-NUT 2017 datasets, the ‘B’ (beginning)
label marks the beginning of a named entity, and
the ‘I’ (inside) label indicates continuation of that
same named entity. However, there is no character-
istic difference between the first word of a named
entity and the rest of the words of it, and it can
be more or less counter-intuitive to separate them
as different classes. Therefore, it is sensible to
merge these ‘B’ and ‘I’ labels, so that the NER
problem becomes a 2-class classification problem
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Figure 4: NN structure with PoS embeddings appended to the word embeddings.

(or a 3-class classification problem, if the ‘padding’
label is counted), which makes it easier for an NN
to fit. This would require the output dimensions
of the NN to be 3 (taking the ‘padding’ label into
account) rather than 4 as shown in Figure 3, and
extra post-processing needs to be performed after
the model predictions, in order to split the named
entity labels back into ‘B’ and ‘I’. To do this, I set
all named entity labels without a preceding named
entity label to ‘B’, and all other named entity la-
bels (i.e. the named entity labels whose preceding
label is also a named entity) to ‘I’. Downweighting
(as aforementioned in Section 4.1) and downsam-
pling (as aforementioned in Section 4.2) can also
be applied together with this techinique, in order
to further improve the model’s performance. Table
3 shows the label counts after merging the ‘B’ and
‘I’ labels, both with and without downsampling.

4.4 Adding part-of-speech embeddings

PoS is a very important feature in NER. As has
been shown in Practical 2, even a naı̈ve classifier
that identifies all proper nouns as named entities
can achieve a F1-score of 44.6%, which is even
higher than a trained feature-based classifier. How-
ever, the default NN only takes into account of
the word embeddings, which can be considered
to be a huge information loss for neglecting the
PoS features. Therefore, for this technique, I in-
troduced a embedding layer with an embedding
size of 16 to compute the PoS embeddings, and
append it to the existing word embeddings. This in-
evitably changed the structure of the NN, as shown

in Figure 4. Downweighting (as aforementioned in
Section 4.1), downsampling (as aforementioned in
Section 4.2) and the merging of B and I labels (as
aforementioned in Section 4.3) can also be applied
together with this techinique, in order to further
improve the model’s performance.

5 Experiments

5.1 Experimental setup
Training: In my final practical, all combinations
of the choices of techniques, namely whether to
apply downsampling, merging of the named entity
labels, and the inclusion of the PoS embeddings,
have been assigned with an NN and tried exhaus-
tively, resulting in 8 families of NNs to be trained:

• BiLSTM: the BiLSTM models with no tech-
niques applied other than downweighting of
the non-named entity labels;

• BiLSTM-DS: the BiLSTM models trained
using the downsampled training set;

• BiLSTM-2Class: the BiLSTM models with
the ‘B’ and ‘I’ labels merged;

• BiLSTM-2Class-DS: the BiLSTM models
with the ‘B’ and ‘I’ labels merged, and trained
using the downsampled trainng set;

• BiLSTM-PoS: the BiLSTM models with PoS
embeddings;

• BiLSTM-PoS-DS: the BiLSTM models with
PoS embeddings, and trained using the down-
sampled trainng set;

• BiLSTM-PoS-2Class-DS: the BiLSTM mod-
els with PoS embeddings, and merging the ‘B’
and ‘I’ labels;

4



• BiLSTM-PoS-2Class-DS: the BiLSTM mod-
els with PoS embeddings, merging the ‘B’ and
‘I’ labels, and trained using the downsampled
trainng set.

In addition, for each of the NN families, down-
weighting of the ‘O’ and ‘padding’ labels with
downweighting ratios ranging from 0.1 to 0.9 are
tried, as well as the no-downweighting options,
have been tried, forming 10 different NNs in each
family. All NNs were trained using an Adam op-
timiser with a learning rate of 10−3, with a batch
size of 32. An early stopping criterion is applied,
in order to halt training if improvements are not
seen after a certain number of epochs. In this final
practical, I did not make any attempt on hyper-
parameter tuning of the NNs, but focused on the
data-processing side to improve the model’s perfor-
mance.

Evaluation: After all 80 NNs have been trained,
I evaluated them on the W-NUT 2017 development
and test datasets, using entity precision, recall and
F1-score as evaluation metrics. I used the naı̈ve
classifier introduced in Practical 2 which identi-
fies all proper nouns as named entities as the non-
machine learning (ML) baseline, and used both the
default feature-based NER classifier provided by
Practical 2, and my feature-based NER classifier
from Assignment 22, as the non-NN ML baseline.
I also used the BiLSTM model without any tech-
niques (i.e. the default BiLSTM model provided in
the final practical) as the NN baseline. The evalua-
tion results are analysed in the next section.

5.2 Results

The evaluation results of my trained NNs are re-
ported in Table 4 and 5 in Appendix A. The re-
sult shows that almost all NNs struggled to catch
up with the baseline performance, with the BiL-
STM model applied with all the techniques (i.e.,
PoS embeddings, merging the named entity labels,
downsampling, and downweighting of ratio 0.2)
simultaneously being the only exception. Besides,
only the best models in the BiLSTM-PoS plus at
least one extra optimisation technique in merging
the named entity labels and downsampling families
can outperform the feature-based baseline.

As of the downweighting technique, nearly all
NN families preferred the lowest downweighting
ratio (0.1), except the BiLSTM-PoS-2Class-DS

2Colab Notebook

family that peaked at 0.2. All NN families demon-
strated a clear increase in the performance as the
downweighting ratio becomes smaller, and most
of the NN families failed to predict any named
entity, except the BiLSTM-2Class and BiLSTM-
PoS-2Class-DS families, when there was no down-
weighting applied. In general, the BiLSTM models
with PoS embeddings react less to downweighting,
when the downweighting ratio is not small enough.

Other than downweighting, which is almost the
necessary component required for making the NNs
predict useful results at all, the PoS embedding
shows the most significant improvement on the
NN’s performance, which coincides with my hy-
pothesis at the beginning. The downsampling
technique and the merging of named entity labels
showed no particular difference in the improve-
ment on performance when applied alone, but can
also show a great improvement on the performance
when combined together. There is also no con-
flict between any pair of optimisation techniques –
they always produce better results when combined
together.

When analysing the precision and recall of the
models, it can be seen that in most cases the pre-
cision can be a lot higher than the recall, showing
that the named entities predicted by the NNs are
more likely to be actual named entities, compared
to the probability of the NNs predicting named en-
tities when the tokens are actually named entities.
This can also be due to the dominant number of
non-named entity (‘outside’ and ‘padding’) labels,
causing the NNs to predict named entities only
when they are absolutely confident.

The best performing NN produced in my final
practical is the BiLSTM model with PoS embed-
dings, merging the named entity labels, trained
with the downsampled training set, with down-
weighting of the non-named entity labels of a down-
weighting ratio 0.2. It achieved a F1-score of
36.3%, which is the highest in all models, including
the selected baselines.

6 Conclusion

In this final practical, I investigated the NN struc-
ture provided by the Colab Notebook, and per-
formed appropriate data exploration and feature
extraction for the NER task. I have also explored
several data-processing techniques in order to im-
prove the NN’s performance, namely downweight-
ing non-named entity labels, downsampling, merg-
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ing named entity labels, and adding part-of-speech
(PoS) embeddings. I evaluated my trained mod-
els on the W-NUT 2017 development and test sets,
using entity precision, recall and F1-score as evalu-
ation metrics, obtaining the best F1-score of 36.3%
from a BiLSTM model with PoS embeddings,
merging the named entity labels, trained with the
downsampled training set, with downweighting of
the non-named entity labels of a downweighting
ratio 0.2. The results show that an arbitrarily de-
signed NN can struggle in the NER task and can be
outperformed by non-NN ML approaches or even
non-ML approaches, which means that NNs are cer-
tainly not the almighty solution to NLP problems,
unless with very careful and fine-grained design.
However, it is delightful to see that even with a
poorly designed NN structure and no hyperparame-
ter tuning, it is still possible to achieve significant
improvements on the performance, by detailed in-
vestigations into the dataset and combinations of
suitable optimisation techniques in data processing.
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Model Dev set Test set
Precision Recall F1 Precision Recall F1

Baseline (PROPN) 44.3% 44.9% 44.6% 30.7% 42.6% 35.7%
Feature-based (Practical 2) 18.7% 44.9% 26.4% 15.2% 44.9% 22.7%
Feature-based (Assignment 2) 27.5% 44.3% 34.0% 20.4% 44.7% 28.0%
BiLSTM 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-DW0.9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-DW0.8 0.0% 0.0% 0.0% 7.1% 0.1% 0.2%
BiLSTM-DW0.7 0.0% 0.0% 0.0% 8.3% 0.2% 0.4%
BiLSTM-DW0.6 8.3% 0.1% 0.2% 6.4% 0.3% 0.5%
BiLSTM-DW0.5 21.4% 0.7% 1.4% 6.5% 0.5% 0.9%
BiLSTM-DW0.4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-DW0.3 20.0% 0.1% 0.2% 0.0% 0.0% 0.0%
BiLSTM-DW0.2 2.9% 0.1% 0.2% 6.0% 1.4% 2.3%
BiLSTM-DW0.1 16.6% 8.4% 11.1% 13.1% 11.5% 12.2%
BiLSTM-DS 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-DS-DW0.9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-DS-DW0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-DS-DW0.7 25.0% 0.1% 0.2% 0.0% 0.0% 0.0%
BiLSTM-DS-DW0.6 7.1% 0.1% 0.2% 2.0% 0.1% 0.2%
BiLSTM-DS-DW0.5 6.5% 0.4% 0.7% 1.5% 0.2% 0.3%
BiLSTM-DS-DW0.4 15.3% 2.1% 3.6% 5.6% 1.4% 2.2%
BiLSTM-DS-DW0.3 14.6% 4.4% 6.7% 7.7% 4.5% 5.6%
BiLSTM-DS-DW0.2 10.9% 8.8% 9.7% 7.4% 10.4% 8.7%
BiLSTM-DS-DW0.1 15.9% 34.3% 21.7% 10.1% 31.4% 15.3%
BiLSTM-2Class 20.0% 0.1% 0.2% 12.5% 0.2% 0.4%
BiLSTM-2Class-DW0.9 31.2% 0.6% 1.2% 11.4% 0.4% 0.7%
BiLSTM-2Class-DW0.8 26.3% 1.2% 2.4% 12.7% 0.7% 1.2%
BiLSTM-2Class-DW0.7 24.1% 1.6% 3.0% 13.7% 1.2% 2.2%
BiLSTM-2Class-DW0.6 29.5% 2.9% 5.2% 18.4% 2.3% 4.2%
BiLSTM-2Class-DW0.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-2Class-DW0.4 3.4% 0.1% 0.2% 6.4% 0.6% 1.0%
BiLSTM-2Class-DW0.3 13.0% 1.7% 3.1% 7.1% 2.8% 4.0%
BiLSTM-2Class-DW0.2 18.7% 9.1% 12.2% 9.1% 9.7% 9.4%
BiLSTM-2Class-DW0.1 23.4% 20.6% 21.9% 15.2% 22.2% 18.0%
BiLSTM-2Class-DS 0.0% 0.0% 0.0% 1.9% 0.1% 0.2%
BiLSTM-2Class-DS-DW0.9 12.3% 0.9% 1.6% 2.6% 0.3% 0.5%
BiLSTM-2Class-DS-DW0.8 15.5% 2.1% 3.7% 9.2% 2.3% 3.7%
BiLSTM-2Class-DS-DW0.7 15.7% 3.6% 5.9% 10.2% 4.0% 5.8%
BiLSTM-2Class-DS-DW0.6 19.0% 7.3% 10.6% 9.9% 5.7% 7.2%
BiLSTM-2Class-DS-DW0.5 20.3% 11.3% 14.5% 11.8% 10.0% 10.9%
BiLSTM-2Class-DS-DW0.4 20.5% 17.4% 18.8% 10.5% 13.2% 11.7%
BiLSTM-2Class-DS-DW0.3 19.8% 24.2% 21.8% 12.1% 21.5% 15.5%
BiLSTM-2Class-DS-DW0.2 20.8% 29.9% 24.5% 13.5% 28.1% 18.2%
BiLSTM-2Class-DS-DW0.1 19.3% 40.4% 26.1% 12.7% 36.1% 18.8%

Table 4: Evaluation results of the word-embeddings-only models on the dev test sets (here DW represents down-
weighting, DS represents downsampling, and 2Class represents merging B and I labels).
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Model Dev set Test set
Precision Recall F1 Precision Recall F1

Baseline (PROPN) 44.3% 44.9% 44.6% 30.7% 42.6% 35.7%
Feature-based (Practical 2) 18.7% 44.9% 26.4% 15.2% 44.9% 22.7%
Feature-based (Assignment 2) 27.5% 44.3% 34.0% 20.4% 44.7% 28.0%
BiLSTM-PoS 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-PoS-DW0.9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-PoS-DW0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-PoS-DW0.7 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-PoS-DW0.6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-PoS-DW0.5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-PoS-DW0.4 0.0% 0.0% 0.0% 2.9% 0.1% 0.2%
BiLSTM-PoS-DW0.3 25.7% 1.1% 2.1% 5.7% 0.8% 1.5%
BiLSTM-PoS-DW0.2 22.4% 5.9% 9.4% 15.6% 9.7% 11.9%
BiLSTM-PoS-DW0.1 31.5% 31.7% 31.6% 19.9% 31.7% 24.4%
BiLSTM-PoS-DS 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-PoS-DS-DW0.9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-PoS-DS-DW0.8 0.0% 0.0% 0.0% 3.8% 0.1% 0.2%
BiLSTM-PoS-DS-DW0.7 19.2% 0.6% 1.2% 1.6% 0.1% 0.2%
BiLSTM-PoS-DS-DW0.6 12.3% 1.1% 2.0% 6.4% 1.1% 1.9%
BiLSTM-PoS-DS-DW0.5 16.0% 3.0% 5.1% 11.0% 3.8% 5.7%
BiLSTM-PoS-DS-DW0.4 23.9% 11.1% 15.2% 17.4% 11.3% 13.7%
BiLSTM-PoS-DS-DW0.3 33.5% 27.7% 30.3% 24.9% 25.2% 25.0%
BiLSTM-PoS-DS-DW0.2 33.1% 35.0% 34.0% 26.9% 33.6% 29.9%
BiLSTM-PoS-DS-DW0.1 31.5% 43.8% 36.7% 24.1% 40.1% 30.1%
BiLSTM-PoS-2Class 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-PoS-2Class-DW0.9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-PoS-2Class-DW0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BiLSTM-PoS-2Class-DW0.7 0.0% 0.0% 0.0% 4.2% 0.1% 0.2%
BiLSTM-PoS-2Class-DW0.6 16.7% 0.2% 0.5% 12.3% 0.7% 1.2%
BiLSTM-PoS-2Class-DW0.5 21.7% 1.2% 2.4% 17.7% 2.4% 4.3%
BiLSTM-PoS-2Class-DW0.4 37.5% 5.2% 9.2% 27.9% 8.9% 13.5%
BiLSTM-PoS-2Class-DW0.3 39.5% 13.3% 19.9% 29.3% 17.5% 21.9%
BiLSTM-PoS-2Class-DW0.2 41.5% 26.7% 32.5% 29.4% 28.2% 28.8%
BiLSTM-PoS-2Class-DW0.1 41.2% 42.2% 41.7% 26.0% 35.4% 30.0%
BiLSTM-PoS-2Class-DS 17.4% 1.5% 2.7% 18.0% 2.7% 4.7%
BiLSTM-PoS-2Class-DS-DW0.9 18.6% 2.6% 4.6% 18.7% 4.1% 6.8%
BiLSTM-PoS-2Class-DS-DW0.8 27.5% 5.8% 9.6% 22.4% 6.8% 10.5%
BiLSTM-PoS-2Class-DS-DW0.7 29.5% 8.2% 12.8% 24.2% 9.8% 14.0%
BiLSTM-PoS-2Class-DS-DW0.6 33.0% 13.7% 19.3% 26.2% 14.4% 18.6%
BiLSTM-PoS-2Class-DS-DW0.5 39.0% 23.2% 29.1% 29.9% 22.8% 25.9%
BiLSTM-PoS-2Class-DS-DW0.4 42.2% 33.8% 37.5% 32.7% 32.7% 32.7%
BiLSTM-PoS-2Class-DS-DW0.3 43.0% 40.6% 41.8% 32.9% 40.1% 36.1%
BiLSTM-PoS-2Class-DS-DW0.2 40.8% 44.3% 42.5% 30.8% 44.2% 36.3%
BiLSTM-PoS-2Class-DS-DW0.1 36.3% 44.0% 39.8% 27.5% 42.7% 33.4%

Table 5: Evaluation results of the models with PoS embeddings concatenated on the dev test sets.
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