
Optimizing Traffic Control 
using Bayesian Inference

Wenyu Li, Xiangyu Zhao, Yilin Sun



Structure of Presentation

● Problem Description

● Simulation

● Emulation

● Evaluation



Problem Description



Motivations

● Impact on city planning: suboptimal traffic control leads to higher carbon 
emissions and waste of time for citizens.

● Adaptable for internet traffic: traffic planning can also be adapted in 
networking and communication for shorter latency, higher throughput and 
lower packet drop rate.

● Feasibility: computer modeling is widely used in traffic simulation and 
optimization.

● This project is inspired by the Google Hash Code 2021 Qualification Round



Problem description: network

Network: directed graph

Junctions: vertices

Roads: edges

Assumption: Each junction has 
exactly 2 incoming roads.

Transformation algorithm



Problem description: traffic light and cars

● Traffic lights are placed at the 
end of each road.

● For each junction, at any 
point, exactly one of the light 
is green.

● During each time step, exactly 
one car passes the junction.

● Cars have uniform speed of 1
● Passing junction generates no 

delay.



Problem description: reward function

Reward is defined as the total distance travelled by all cars in the system

Goal: To maximize the reward function in a given time period T

In Google Hash Code, original reward for each car is 



Simulation



Simulator structure



Network initialisation

Problems of most naïve random network generation algorithms:

● Deadends: junctions with no outgoing roads

● Disjoint clustering: network becoming multiple disjoint clusters



Network initialisation

● Random network ● Text input● Ring network



Simulation mechanism

Ticking: take turns to simulate every junction and every car at every time frame

● Junction: picks a road whose traffic light is green, and dequeue a car from 
that road (if any)

● Car: travels a distance of 1 along a road, or pushed into the queue at the end 
of the road



Emulation



Methods and Techniques

● For our emulator, we used Gaussian Process and Bayesian Optimization

● Rationale behind the choice:
○ Traffic Simulation is costly => minimize number of evaluations

○ Traffic Simulation analogous to a black box, very limited understanding

● The Bayesian Optimization library of choice is GPyOpt

● Pipeline:
○ Scheduler → Simulator → Bayesian Optimizer



Models and Parameters

In addition to our basic model as mentioned in the simulator, we also added 
certain simplification of assumptions to facilitate the efficient emulation.

We started off by considering two basic cases:

1. Distinct Scheduling
2. Uniform Scheduling

We then move on to the hybrid of the two: 

3. Preset scheduling



Distinct Scheduling

● Treat every junction separately, assign two 
parameters: red_len_n and green_len_n 
to describe the scheduling at n-th junction

● (Pro) Very descriptive, covers all possible 
search space

● (Con) Explosion of search space, take 
extremely long to converge, impractical to 
carry out in real time

● (Con) Large search space also leads to higher 
risk to settling in local minima instead of global 
minima



Uniform Scheduling

● Another extreme, let every junction share the 
same schedule

● (Pro) Number of parameters reduce 
significantly to 2, much faster to emulate and 
optimize

● (Con) Lack of descriptiveness, unable to 
adjust for the differences in junctions

● Performs surprisingly well in uniform networks 
(e.g. ring networks), but poorly in more 
complex ones. Overall an adequate choice for 
fast, real-time optimization.



Preset Scheduling
● A hybrid between uniform and distinct scheduling
● Assume there are only a fixed set of schedules 

(preset schedules), let the junctions choose 
within this fixed set

● Reduces search space drastically, but still 
exponential due to the combinatorial nature of 
the model.

● Could be an inspiration for more efficient 
optimization techniques.

● Variant: forced preset - we force the preset 
schedules to span an even range, then let the 
junctions choose within the set



Can we achieve constant-time optimization?

● Preset scheduling achieves reasonable convergence speed
● But it is subjected to exponential increase in search space. 
● As size of network increases, we observe that the time its takes to converge 

to optimal values becomes much longer.

It might be possible to achieve constant-time optimization using following method:

1. Pretrain the model to assign modes,either using GP or assign using graph 
properties such as degrees/centrality of nodes.

2. In the real-time system, we only finetune preset schedules, which have 
constant number of parameters and constant upper-bound on converge time.



Evaluation of the models



Evaluation of the models



Evaluation of the models



Conclusion



Conclusion

● We explored the possibility of traffic optimization using GP and BO

● We have obtained results that confirmed our conjectures

● However, there are certain outliers that are worth looking into

● Ways forward:
○ Attempt other optimization techniques (e.g. Reinforcement Learning)

○ Look deeper into the anomalies

○ Explore the likelihood of our models (evidence)

○ Visualization



Thank you!


