

Structure of Presentation

e Problem Description
e Simulation
e Emulation

e FEvaluation

Motivations

e Impact on city planning: suboptimal traffic control leads to higher carbon
emissions and waste of time for citizens.

e Adaptable for internet traffic: traffic planning can also be adapted in
networking and communication for shorter latency, higher throughput and
lower packet drop rate.

e Feasibility: computer modeling is widely used in traffic simulation and
optimization.

e This project is inspired by the Google Hash Code 2021 Qualification Round

Problem description: network

Auxiliary

Network: directed graph
Junctions: vertices

Roads: edges

Auxiliary ------

Assumption: Each junction has
exactly 2 incoming roads.

Transformation algorithm

Problem description: traffic light and cars

—

e Traffic lights are placed at the | % Watngcar (2 Moving car

end of each road.

e For each junction, at any
point, exactly one of the light
is green.

e During each time step, exactly

one car passes the junction.

e Cars have uniform speed of 1
e Passing junction generates no
delay.

Problem description: reward function

Reward is defined as the total distance travelled by all cars in the system

Reward = Z Distance travelled by car c;
c; € Cars

In Google Hash Code, original reward for each car is

Score for car i = F' + (D — T) if finishes else 0

Goal: To maximize the reward function in a given time period T

Simulator structure

Schedule

schedule: Callable{[int], int]

get_incoming_at(t: int): int

N

Simulator

network: Network
cars: List[Car]
sim_len: int
clock = 0:int

initialize(...): None
simulate(...): None
tick(): None
get_reward(): int
reset(): None

1

Network

roads: List{Road]

junctions: List[Junction]

generate_network(junction_num: int, max_road_length: int): None
transform(k: int): None
draw(filepath: str):

None

1.n

]2 2n

lu

Car

name: str

route: List[Road]
idx = 0:int

dist = 0: int
reward = 0: int

gen_route(network: Network, road_num: int): None
get_road(): Road

tick(): None

advance(): None

reset(): None

Road

Junction

Periodic Schedul:

name: str

in_rds: List{Road]

out_rds: List[Road]
schedule: PeriodicSchedule

0—
1 2n

name: str
length: int
queue: List[Car]
origin: Junction
exit: Junction

get_rd_from(junction: Junction): Road
get_rd_to(junction: Junction): Road
tick(t: int): None

connect(origin: Junction, exit: Junction, length: int, name: sir): Road

enqueue(car: Car): None
dequeue(): Car
reset(): None

Network initialisation

Problems of most naive random network generation algorithms:

e Deadends: junctions with no outgoing roads

e Disjoint clustering: network becoming multiple disjoint clusters

Network initialisation

e Random network e Ring network e Textinput

z/x/]\ 3//“\1\5 ~ /\\
\\l \4 \] ya \
N7\ > X =

1<\3\0

Simulation mechanism

Ticking: take turns to simulate every junction and every car at every time frame

e Junction: picks a road whose traffic light is green, and dequeue a car from
that road (if any)

e Car: travels a distance of 1 along a road, or pushed into the queue at the end
of the road

Methods and Techniques

e For our emulator, we used Gaussian Process and Bayesian Optimization

e Rationale behind the choice:

o Traffic Simulation is costly => minimize number of evaluations

o Traffic Simulation analogous to a black box, very limited understanding

e The Bayesian Optimization library of choice is GPyOpt

e Pipeline:

o Scheduler — Simulator — Bayesian Optimizer

Models and Parameters

In addition to our basic model as mentioned in the simulator, we also added
certain simplification of assumptions to facilitate the efficient emulation.

We started off by considering two basic cases:

1. Distinct Scheduling
2. Uniform Scheduling

We then move on to the hybrid of the two:

3. Preset scheduling

Distinct Scheduling

Parameters: . . .
red_lens = [30, 20. 40, 10, 50] e T[reat every junction separately, assign two

green_lens = [30, 40, 30, 20, 50] parameters: red_len_n and green_len_n
to describe the scheduling at n-th junction

e (Pro) Very descriptive, covers all possible
search space

e (Con) Explosion of search space, take
extremely long to converge, impractical to
carry out in real time

e (Con) Large search space also leads to higher
risk to settling in local minima instead of global
minima

(10, 20) (40, 30)

Uniform Scheduling

Parameters:
red len =30
green_len = 30

(30, 30) ((30, 30)

(30, 30) (30, 30)

Another extreme, let every junction share the
same schedule

(Pro) Number of parameters reduce
significantly to 2, much faster to emulate and
optimize

(Con) Lack of descriptiveness, unable to
adjust for the differences in junctions
Performs surprisingly well in uniform networks
(e.g. ring networks), but poorly in more
complex ones. Overall an adequate choice for
fast, real-time optimization.

Preset Scheduling

Parameters:
preset_red_lens = [10, 20, 30]
preset_green_lens = [30, 20, 10]
modes = [0, 1, 2, 1, 2]

(10, 30)

(30, 10) (20, 20)

(20, 20) (30, 10)

A hybrid between uniform and distinct scheduling
Assume there are only a fixed set of schedules
(preset schedules), let the junctions choose
within this fixed set

Reduces search space drastically, but still
exponential due to the combinatorial nature of
the model.

Could be an inspiration for more efficient
optimization techniques.

Variant: forced preset - we force the preset
schedules to span an even range, then let the
junctions choose within the set

Can we achieve constant-time optimization?

e Preset scheduling achieves reasonable convergence speed
e Butitis subjected to exponential increase in search space.
e As size of network increases, we observe that the time its takes to converge

to optimal values becomes much longer.
It might be possible to achieve constant-time optimization using following method:

1. Pretrain the model to assign modes, either using GP or assign using graph
properties such as degrees/centrality of nodes.

2. In the real-time system, we only finetune preset schedules, which have
constant number of parameters and constant upper-bound on converge time.

Evaluation of the models

SN 2 DedAN O B 2 4 bt o 1 st ate o e

(c) Preset scheduling with 2 modes

e B L ey

b aEEEE) T
Ml
: = ik [
: TLAL a
M 3+l T%‘r‘" 'i" il
| o g |l i
Easi N =
(d) Preset scheduling with 5 modes (e) Forced-preset scheduling with 2 modes (f) Forced-preset scheduling with 5 modes

Figure 4. Convergence graph for running Bayesian optimisation on a 5-junction network

Schedule Opt. schedule Opt. reward | Convergence iter.
Uniform [17,12] 931 78
Distinct [(21, 38), (30, 41), (26, 13), (32, 29), (26, 36)] 964 200

schedules: [(16, 29), (54, 9)]|

Preset (2 modes) modes: [0, 0,0, 1, 0] 1014 125
schedules: [(15, 13), (40, 47), (31, 17), (14, 7), (29, 31)]

Preset (5 modes) modes: [0, 2,2, 2. 0] 984 322

s cycle length: 6

Forced-preset (2 modes) siodess [0,0,0,1,] 992 24

Forced-presst (5 modes) | SYCi€ length: 43 939 29

modes: [1, 2,2, 3, 3]

Table 1. Experimental results for running Bayesian optimisation on a 5-junction network

Evaluation of the models

Distarce between corgecutive x's Value of the bezt selected ssmple Distance between corcecutive x'3 Value of the bezt sefected sample Otstarce between corzecutie x'3 Value of the best selected ssmple
L l / el
ALl -l
. o |
21 i f o0 1 - 1
N [N —— - -“‘H_
(a) Uniform scheduling (b) Distinct scheduling (c) Preset scheduling with 2 modes
Distarce between cormmcutie «'s Ve of the best selected vample Distarce betwwen coramcutive 'y Vidue of the best selected samphe x4 Distarce betwesn commmcutive c's Vidue of the best selected samphe
- ' w4 I —ox 1 .
1] Lol i g’ 111 L
- I | = " ‘ 1]
3 y ‘—x foilinl 1 | 7 | o} |
»] it al t =1 1 L *14 M i
(d) Preset scheduling with 5 modes (e) Forced-preset scheduling with 2 modes (f) Forced-preset scheduling with 5 modes

Figure 5. Convergence graph for running Bayesian optimisation on a 40-junction network

Schedule Uniform | Distinct | Preset (2) | Preset (5) | Forced-preset (2) | Forced-preset (5)
Opt. reward 8096 6904 8164 8176 8175 7320
Convergence iter. 83 391 285 117 88 112

Table 2. Experimental Results for Bayesian optimisation on a 40-junction network

Evaluation of the models

Diztance between consecuene X \alue of the best selected ampie Diztance besmeen conzecutve X3 ” Vatue of the bes: seiectod sample
. e
,'
» | -
1.
1ol [l
ALY
[

M
S

4

w000 |
l'x" - =

L .
"""‘\' — "

(a) Uniform scheduling (b) Distinct scheduling
Stk Y ohisol i ok stk sl b RS (e o kst sl
w -
ot 3

2 "o
%
w 1
| ——
5 = S T g > = F - = =

(c) Preset scheduling with 2 modes (d) Forced-preset scheduling with 2 modes

Figure 6. Convergence graph for running Bayesian optimisation on a 200-junction network

Schedule Uniform | Distinct | Preset (2) | Forced-preset (2)
Opt. reward 40705 30873 41062 41030
Convergence iter. 45 475 218 432

Table 3. Experimental Results for Bayesian optimisation on a 200-junction network

Conclusion

e \We explored the possibility of traffic optimization using GP and BO
e \We have obtained results that confirmed our conjectures
e However, there are certain outliers that are worth looking into

e Ways forward:

o Attempt other optimization techniques (e.g. Reinforcement Learning)
o Look deeper into the anomalies
o Explore the likelihood of our models (evidence)

o Visualization

Thank you!

