
Building a Simulator and Emulator for Traffic Signaling

Wenyu Li * 1 Yilin Sun * 2 Xiangyu Zhao * 3

1. Introduction
The history of traffic signalling dates back to 1868, when
the first traffic light was installed at the houses of parliament
in London. Over the years, traffic planning began to show
significant influence in various aspects. Inappropriate traffic
planning results in congestion, leading to a waste of time
and fuel and an increase in carbon emissions (Braess et al.,
2005; Raymond, 2001). This makes traffic signalling not
only an interesting problem but also an important challenge
for countries to tackle.

In fact, traffic expands to a much broader definition. The
Internet we use every day is a form of traffic. With packets
continuously arriving at routers, the sequence these pack-
ets are processed and forwarded plays an important role
in efficient networking and communication. By minimis-
ing congestion, we would be able to get shorter latency,
higher throughput and lower packet drop rate, thus improv-
ing the quality of service (Thompson et al., 1997; Moore &
Zuev, 2005). Broadly speaking, for most graph structures
in our life, some planning is involved, be it supply chain
(Min & Zhou, 2002), electric circuits (Calhoun et al., 2008)
or telecommunication systems (Frost & Melamed, 1994).
Therefore, the problem of traffic planning is indeed of great
academic significance.

Computer modelling makes simulation and optimisation of
traffic a real possibility. Conventionally, traffic modelling
includes three critical parts: road layout, signal schedule,
and traffic density (Hoogendoorn & Bovy, 2001). Simu-
lation of the traffic can occur at different granularity and
fidelity (Azlan & Rohani, 2018). Microscopic models re-
gard each car as a separate element, while macroscopic
models describe the traffic by density (Treiber et al., 2006;
Lee et al., 2001). In between are hybrid approaches where
vehicles are analysed in small groups (Burghout, 2004). In
this project, we attempt to simulate traffic microscopically
and use Bayesian optimisation (Močkus, 1975; Snoek et al.,
2012) to emulate and optimise the signalling schedule.

*Equal contribution 1Girton College, MPhil in ACS
2Magdalene College, CST Part III 3Trinity College, CST Part
III. Correspondence to: Wenyu Li <wl414@cam.ac.uk>, Yilin
Sun <ys512@cam.ac.uk>, Xiangyu Zhao <xz398@cam.ac.uk>.

2. Task Description
2.1. Network

A network, simply put, is a directed graph. Its junctions are
vertices and its roads are edges. A two-way road can be
considered as a pair of edges connecting the same pair of
junctions, with the same length but opposite directions.

We also make the following assumption on all of the graphs
we simulate:

Assumption 2.1. Each junction contains exactly two in-
coming roads.

While this seems a very bold assumption to be made, it is
actually not, as any graph could be transformed into the
form mentioned above without losing any property desired
in the simulation.

However, two special cases in the network might still exist.
Firstly, there can be two roads between the same pair of junc-
tions in the same direction. Secondly, roads can originate
and end at the same junction. Therefore, technically, our
graph is not only directed, but also could be multi-edged and
self-looped. However, we have also provided initialisation
setting to prevent such properties upon random generation
of the graph if the user desires.

At this point, you may wonder why do we have to make
such an assumption. Furthermore, why do we not care about
outgoing edges but only incoming edges? The answer is
short – simplicity. To explain this, we would first need to
look at how traffic is scheduled, which would give a natural
explanation of the rationale behind.

2.2. Traffic Signal

The traffic light schedule, as one might expect, defines at
each time point which roads should allow the release of
queuing cars. This could be easily explained by Figure 1:
when T = 0, traffic light is green for a-street. Therefore,
the yellow car is dequeue and move onto d-street at T = 1.
Similarly, the green car gets dequeued at T = 1. To simulate
the real-life situation, we make the second assumption in
this section:

Assumption 2.2. At any point, for every junction, exactly
one road is allowed to release its queue of cars.

Building a Simulator and Emulator for Traffic Signaling

Figure 1. This figure shows how five cars queue at a junction and
pass through according to the traffic signal (Google, 2021). The
junction has two outgoing roads and two incoming roads. The
green light for a-street lasts for 2 time steps so two of the three
cars waiting at that street drive through and the other car has to
wait for another round.

This avoids problems such as multiple roads releasing cars
at the same time or no road releasing its cars. Certainly, we
could define more sophisticated schedules, allowing mul-
tiple roads to release cars simultaneously, like a crossroad.
However, that only complicates our simulation with little
benefit added.

This clearly explains why we want every junction to have
exact two incoming roads, simply because this is the most
basic case we could have with a meaningful schedule. A
junction with only one or no incoming road does not need
scheduling to avoid cars crashing into each other. In ad-
dition, the outgoing road plays no part in the scheduling
process as cars are passively added to them after they pass
the junction and there is no competition happening between
them.

Finally, throughout the simulation, we only use periodic
schedule, which is a special kind of scheduling that peri-
odically switches between red and green lights. Although
admittedly a theoretically general traffic signal scheduling
does not set constraints on periodicity, any properly func-
tioning traffic signal in the real world would have a fixed
duration for red and green lights. Therefore, to simulate the
real-world scenario, we will focus on periodic schedules for
all junctions in our setup.

2.3. Cars

Each car is regarded as an independent element and has
its own travel plan when it gets deployed on the network.
The travel plan of each car is a sequence of roads. The car
has to travel along the designated roads without any detour

until it reaches its destination, from when it would remain
stationary until the end of the simulation.

Every car has a uniform speed of 1, meaning it takes L units
of time to complete a road of length L. Crossing junctions
produces no delay by assumption. When a car reaches the
end of the road it is travelling on; it joins the queue (and
gets immediately released if the light is green). The queue
acts in a first-in-first-out (FIFO) fashion so the cars wait
until their turns to move.

2.4. Reward

The final goal of our optimiser is to maximise a certain
reward function. Formally, we define the reward to be the
cumulative distance travelled by all cars within the system:

Reward =
∑

ci ∈ Cars

Distance travelled by car ci

This is slightly different from the definition of the scoring
function in the Hash Code competition (Google, 2021):

Score for car i = F + (D − T) if T ≤ D else 0

where F is the bonus granted for finishing the route, T is
the time when the car finishes and D is the total distance
travelled by the car.

We choose to avoid the latter function because it is not ana-
lytic for optimisation. A slight change in traffic scheduling
could easily make a number of cars unable to finish their
route, thus setting their score to 0. This makes it extremely
difficult to locate minimum points for the optimiser.

2.5. Transformation

We have glossed over the fact that network with purely
2-incoming junctions are general enough since any graph
could be transformed into this form without losing the de-
sired properties. Here we propose the following algorithm
for transformation:

Case 1
if Junction j has 0 incoming edge then

for i in range(2) do
add self loop to j

end for
end if

Case 2
if Junction j has 1 incoming edge e then

duplicate e
end if

Case 3
if Junction j has k incoming edge e and k > 2 then

nodes← j.incoming

Building a Simulator and Emulator for Traffic Signaling

while len(nodes) > 2 do
aux = node()
n1 = nodes.pop()
n2 = nodes.pop()
del edge(n1, j, w1), edge(n2, j, w2)
add edge(n1, aux,w1), edge(n2, aux,w2)
add edge(aux, j, 0)
nodes.add(aux)

end while
end if

As a simple example, we could see how a 5-incoming junc-
tion could be transformed into 2-incoming junctions via the
process shown in Figure 2.

So what property does this transformation preserve exactly?
Firstly, it preserves the total distance between the nodes.
This is important as the distance impacts the travel time
of the car. Secondly, any schedule we make in the orig-
inal graph, there would be a corresponding schedule in
the transformed graph. Similarly, for any schedule in the
transformed graph, there is a corresponding schedule in
the original graph. This nice one-to-one correspondence
allows us to take an arbitrary graph, transform it, optimise
the schedule and transform the schedule back. Allowing our
2-incoming network to model any graph in general.

3. Simulation
To tackle the problem defined above, we first built a simula-
tor that models the system and performs simulations based
on given initialisation of the environments and inputs of
traffic signal schedules. This enables us to find the optimal
traffic signalling schedule via exhaustive search and Monte
Carlo methods. More importantly, it provides the tool for
data point generation in the emulator at the later stage.

3.1. System setup

In our simulator, we model the network and traffic using
Object-oriented Programming techniques. Each Network
object would consists of a list of junctions and a list of
road, which have Junction and Road class defined re-
spectively.

A Junction keeps track of incoming and outgoing roads
as lists and it also keeps a Schedule. The Schedule
class contains a function from time to index, representing
the traffic signalling process to select the road for car re-
lease at certain point in time. We defined a child class of
Schedule named PeriodicSchedule. It denotes a
special schedule which selects the roads in a round-robin
fashion, with good resemblance to the real-world scenario.

Finally, we defined the Road and Car classes to denote
roads and cars respectively. Road keeps a queue that

Auxiliary

Auxiliary

Auxiliary

3
7 4 6

2

3 7

0

4 6

2

3 7

0
0

4 6

2

3 7

0
0

0

4 6

2

Figure 2. Transform from multiple incoming roads to two incom-
ing roads.

records the cars waiting at the junction while Car records
the road it is on, the travel route to follow and the distance
travelled so far. Once the car has completed its route, it
stops at its final destination junction, and will not move
again for the entire simulation.

3.2. Network and route generation

In our simulator, both the network structure and the route
for each car can be initialised either by manual setup or ran-
dom generation. For the random generation of the network
structure, we introduced the following two alternatives:

Random connected network According to the assump-
tions of a network as described in Section 2.1, we need
to generate a network in which the number of roads is ex-
actly twice the number of junctions. In order to generate
a network that has as much randomness as possible, while
preserving adequate suitability for our problem, we have
tried various random generation algorithms, but most of
them poses the following two problems:

• Deadends: since there are only 2n roads in a network
containing n junctions, the network is quite sparse, and
most naı̈ve random network generation algorithms can
frequently generate a network that contains deadends,
i.e. junctions with no outgoing roads. Deadends can
cause any car reaching it to stuck, and prevents us from
generating further route for the car, thus limiting the
total length of a car’s route.

• Clustering: a naı̈ve random network generation algo-
rithms also tends to generate a network that can be
divided into multiple disjoint sub-networks, reducing
the overall connectivity of the network. If a network
does not provide enough connectivity, the cars in the

Building a Simulator and Emulator for Traffic Signaling

(a) Random connected network (b) Random ring network (c) Network from text input

Figure 3. Three simple network initialisations by our simulator using different methods. Note that in a random ring network, the roads
with opposite directions connecting two junctions are allowed to have different lengths, as opposed to the example shown in (b).

network cannot have any meaningful route other than
travelling around in cycles.

In order to resolve these two problems, we eventually de-
signed an algorithm that generates a random network by
splitting the junctions of the network into two disjoint sub-
sets, one containing the already interconnecting junctions,
and the other containing the isolate junctions. For each
junction j, as long as both subsets are not empty, one junc-
tion is randomly sampled from each subset, and a new road
originating from each of the sampled junctions to junction j
is built. If one of the subsets is empty, then both junctions
are sampled from the other subset, which can guarantee to
have at least two different junctions. The lengths of the
roads is also randomly generated, satisfying the constraint
that L ≤ Lmax. This algorithm not only preserves sufficient
randomness for the network it generates, but also avoids
deadends and guarantees adequate connectivity.

Random ring network This is a special network structure
that consists of a ring connecting all the junctions, with
every pair of adjacent junctions interconnecting each other
by two roads of opposite directions. The lengths of the
roads are randomly generated, also satisfying L ≤ Lmax.
The two roads with opposite directions connecting the two
adjacent junctions are not required to have the same length.
An interesting property of the network is its symmetry as all
nodes in the graph have the same degree.

Network from text input In addition to the random gen-
eration of the network structures and the car routes as de-
scribed above, we also supports the initialisation of the sys-
tem via text input, adopting the input formatting of Google
Hash Code 2021 Qualification Round (Google, 2021). Fig-
ure 3 shows the visualisations of some sample networks
generated using each of the aforementioned methods, drawn
using the NetworkX library (Hagberg et al., 2008).

3.3. Simulation mechanisms

In our simulator, under a given initialisation of the network
and car routes together with a fixed input schedule for the
traffic lights, we simulate the system within a preset duration
in a time frame by time frame manner, using a mechanism
called ticking: for every time frame, we take turns to simu-
late the action of every junction and every car in that exact
time frame. At each time frame, a junction firstly picks
an incoming road whose traffic light is green, which is de-
termined by the traffic signalling schedule of that junction.
If that incoming road still has cars waiting in its queue, it
dequeues a car from the queue, and let the car advance to
the next road in its preset route. Besides, at each time frame,
a car whose route has not been completed either travels a
distance of 1 on the middle of its current road, or is pushed
into the road’s queue if it reaches the end of the road. As
long as a car travels within a time frame, it increments its
reward by 1. At the end of simulation, the sum of rewards of
all the cars is calculated, as the reward of the input schedule
under the given system initialisation.

4. Emulation
In addition to the simulator, we also built an emulator to
carry out automatic optimisation of the traffic light schedul-
ing. We also collected data on different model choices to
evaluate their effectiveness. In this section, we will elaborate
our approach to the emulation, followed by a description
of various models and heuristics behind. Lastly, we would
explain about our data collection process for the emulation.

4.1. Emulation Pipeline

The general emulation process could be broken down into
three different stages:

• scheduling: transform input X into list of schedules
corresponding to each junction;

• simulation: build a simulator using the schedule design

Building a Simulator and Emulator for Traffic Signaling

from step above;

• Bayesian optimisation: use GPyOpt (GPy, since 2012;
The GPyOpt authors, 2016) to carry out optimisation
using Gaussian process.

One interesting observation about the pipeline is that stage 1
is where different model choices manifest, whereas stage 2
and 3 are almost identical throughout, meaning if we would
like to benchmark the performance of different models, all
we have to change is the scheduling part of our program.

4.2. Models

We now move on to elaborate on different model choices
we have tested and the heuristics behind. As mentioned, the
scheduling stage is the key to modelling, so we will focus
on that part.

4.2.1. DISTINCT SCHEDULING

One natural scheduling choice is to assign two parameters
to each junction for our input. This is because we have
simplified our problem such that each junction contains
exactly two incoming roads. This means two parameters:
time for ‘left’ incoming and time for ‘right’ incoming are
able to describe the scheduling completely.

However, while this model clearly provides the most de-
tailed description of our state space, it is clearly the least
efficient to emulate. This leads us to the problem of ‘curse
of dimensionality’, a recurring yet difficult problem in ma-
chine learning. This is especially the case in bayesian op-
timisation, where the large number of parameters leads to
long calculation time for the posterior distribution (Snoek
et al., 2012). Consider the case where we have merely 40
junctions. This could easily give us 80 parameters to opti-
mise. Assuming each parameter could take discrete values
between 1 to 60, this gives 6080 possible states to explore,
which could takes hours, if not days to get anything even
close to optimal.

4.2.2. UNIFORM SCHEDULING

The infeasibility of high-dimensional optimisation leads to
another extreme end of choice, which is to use the same
schedule for every junction. This quickly reduces our num-
ber of parameters to merely 2.

This clearly gives us a much more efficient emulator. If time
is severely constrained or prioritised (e.g. in a real-time sys-
tem), this method could be a feasible technique. However,
the advantage with time does not comes free as we have
sacrificed flexibility. The descriptive power of this model is
very limited as it does not account for the differences arising
from network structure or car route. However, we found
that it still performs decently well in networks with small

scale or symmetries due to the small variability involved.

The advantages and disadvantages of this model are usually
observed as fast convergence rate but lower convergence
limit as we would soon discover in our experiments.

4.2.3. PRESET SCHEDULING

Just like most design choices, the extremes usually are not
the optimal choices. Seeking balance between both ends of
the spectrum commonly brings the best of the two worlds.
That is what leads to our third model choice, the preset
scheduling.

As the name suggests, we use a few preset schedules and
allow each junction to choose between them. This is in fact
simply a hybrid between pure distinct and pure uniform.
Unlike distinct scheduling, we are not giving each junction
so much free that the size our state space gets out of control.
However, different from uniform scheduling, we also do
no constrain our choice too much that the power of our
optimisation become too limited. Indeed, to strike a balance
it is.

As such, we may describe our model formally as follows:

• the input X contains:

– n preset schedules, described by n pairs of red/
green duration: (r1, g1), (r2, g2), ..., (rn, gn), and

– a schedule choice of j junctions (called modes),
described by s1, s2, ..., sj , where 1 ≤ si ≤ n;

• we then construct our simulator, by assigning junction
i with periodic schedule (rsi , gsi);

• finally, we carry out Bayesian optimisation as usual.

The number of parameters in this model is only 2n + j,
almost only a half of that compared to distinct scheduling
when j is large. More importantly, the j mode choices
are constrained to take only integer value from 1 to n. If
we consider the case of 40 junctions, 3 modes, maximum
duration of 60 seconds for each incoming road, the distinct
scheduling gives a input space of 6080 ≈ 1.8× 10142 while
the preset scheduling gives only 603 × 340 ≈ 2.6 × 1024,
which is indeed a significant reduction in search space.

4.2.4. TWO-STAGED PRESET

However, even for something in the scale of 1024, it could
still be a great challenge for our optimiser. A more serious
problem associated with the above method is that it does
not scale. As the number of junctions increases, the number
of parameter grows with it linearly and the search space
grows exponentially. This gives a frustrating resemblance
to NP-complete problems, which is almost impractical to
get close-to-optimal solutions in polynomial time.

Building a Simulator and Emulator for Traffic Signaling

(a) Uniform scheduling (b) Distinct scheduling (c) Preset scheduling with 2 modes

(d) Preset scheduling with 5 modes (e) Forced-preset scheduling with 2 modes (f) Forced-preset scheduling with 5 modes

Figure 4. Convergence graph for running Bayesian optimisation on a 5-junction network

Schedule Opt. schedule Opt. reward Convergence iter.
Uniform [17, 12] 931 78
Distinct [(21, 38), (30, 41), (26, 13), (32, 29), (26, 36)] 964 200

Preset (2 modes)
schedules: [(16, 29), (54, 9)]
modes: [0, 0, 0, 1, 0] 1014 125

Preset (5 modes)
schedules: [(15, 13), (40, 47), (31, 17), (14, 7), (29, 31)]
modes: [0, 2, 2, 2, 0] 984 322

Forced-preset (2 modes)
cycle length: 6
modes: [0, 0, 0, 1, 1] 992 24

Forced-preset (5 modes)
cycle length: 48
modes: [1, 2, 2, 3, 3] 939 29

Table 1. Experimental results for running Bayesian optimisation on a 5-junction network

To tackle this problem, we would like to have a fixed or log-
arithmic number of parameters with respect to the number
of junctions. We believe the two-staged preset model might
be able to offer an interesting solution.

We believe that the schedule choice is very closely linked
to the nature of the network, assuming the car routes are
distributed randomly enough. Consider in real life, we
often find some preference on time allocation for different
incoming roads. Simply look at the junction outside the
Computer Laboratory, the traffic light allocates much more
time for Madingley Road compared to JJ Thompson Avenue
simply because the former enjoys much greater traffic flow.
The reason that Madingley Road has a greater traffic flow
is due to the fact that it is a trunk road, connecting the city
center to other central locations, both being nodes of high
degrees.

Such observations would mean that given a road network,
we might be able to pre-train a specific scheme even without
any traffic and fine tune the parameters given specific car
routes. This allows us to devise the following two-staged

algorithm:

Stage 1 (Pre-training):
network is taken from input
cars are generated at random
schemes are fixed to cover the cases

where favour 'left'/'right' or fair
choices are subjected to optimisation

network = parse_network_from_input()
cars = generate_random_cars()
schemes = [[1,3], [2,2], [3,1]]
domain = {...scheme choices for junction

in junctions...}
opt.optimize(

lambda choices: simulator.simulate(
network, cars, schemes, choices

), domain)

Stage 2 (Fine-tuning):
network same as stage 1
cars are taken from input
schemes are subjected to optimisation
choices are fixed

Building a Simulator and Emulator for Traffic Signaling

network = parse_network_from_input()
cars = parse_cars_from_input()
choices = opt.opt_x
domain = {...schemes for junction

in junctions...}
opt.optimize(

lambda scheme: simulator.simulate(
network, cars, schemes, choices

), domain)

While significant cost in pre-training is still being incurred,
the fine-tuning time could be drastically decreased as the
number of parameters are fixed during the fine-tuning pro-
cess. This is great in real life as the underlying road in-
frastructure rarely changes but the traffic running on it are
subjected to frequent fluctuations.

Unfortunately, given the limited time frame, we were only
able to implement the 2-staged preset algorithm but not
benchmark it against others. However, the ideas proposed
in this report could serve as an inspiration for interested
readers to carry out extensions.

4.3. Data Collection

With the models being built and emulator being constructed,
we then moved on to our data collection process. For
data collection, we mostly rely on the in-built functions:
plot_acquisition and plot_convergence from
GPyOpt. We observe trends from the graph and derive con-
clusions on the effectiveness of our emulation techniques.

For small scale problems, we were able to get the ground
truth, i.e., the most optimal solution from exhaustive search.
However, as problem size gets larger, exhaustive search
quickly becomes infeasible and therefore comparison is
based purely on convergence speed and final convergence
limit. Thus, for large scale problems, the comparisons are
purely relative between each method with no conclusive
result on individual effectiveness as of how close to ground
truth it gets.

5. Experiments
In this section, we will describe the Bayesian optimisation
experiments we performed using different signalling mod-
els, and evaluate their results as well as comparing their
performance in terms of convergence speed and limit.

5.1. Experimental Setup

We have carried out extensive trial and test on our model on
problems of varying scale. In particular, we have run our
emulator on junction size of 5, 40, 200 respectively to em-
ulate networks of small and medium scale. We also aimed
to run our emulator on junction size of 1000. However, we
discovered that the number of parameter is too large to get

any meaningful result in the given period of time. Therefore,
our following discussion will be primarily focused on small
and medium networks and potentially serve as a humble
inspiration for problem of more realistic scale.

For each testing environment, we have used four different
emulation techniques, namely uniform scheduling, distinct
scheduling, preset scheduling, and forced-preset schedul-
ing. The last emulation technique is based on the preset
scheduling, but we assert the preset schedules to span a
broad spectrum. For example, when the number of preset
schedules is 3, we will use (15, 45), (30, 30), (45, 15) as our
preset schedules when the cycle length is 60.

It should also be noted that the preset and forced-preset
scheduling are run twice with the number of preset schedule
being set to 2 and 5 respectively. This is to investigate the
impact of schedule number on the effectiveness of these
methods.

5.2. Results and Analysis

As mentioned in the previous subsection, the experiment
is carried out on problems of different scale. As such, our
discussion of the results will be split into the case where
n = 5, 40, 200 respectively.

5.2.1. VERY SMALL NETWORK (N = 5)

On a very small network, we would be able to run all ex-
periments until they fully converge. This gives us some
meaningful results to compare the convergence limit. We
have run the experiment multiple times on different seeds
and select the result that is the most representative across
all the trials conducted. The convergence graph and experi-
mental results are attached in Figure 4 and Table 1.

Due to the small network size, the convergence of all 6
experiments are very close to each other. However, some
minor difference could still be observed. In particular, the
uniform scheme usually performs the worst out of all 6
experiments. This is due to the fact that the descriptiveness
of merely 2 parameters is very limited. This prevents the
model to capture differences in junctions and make changes
to accommodate them.

The preset, forced-preset and pure distinct generally per-
forms better with very close convergence limits, with preset
usually performs the best out of the three. While this result
seems quite surprising as the distinct model should capture
more details and cover cases generated by the preset sched-
ule, we believe the deterioration in performance could be
explained by the following:

• The search space of pure distinct scheduling is way
too big. This could make the optimiser land in local
minimum when global minimum is too hard to locate.

Building a Simulator and Emulator for Traffic Signaling

(a) Uniform scheduling (b) Distinct scheduling (c) Preset scheduling with 2 modes

(d) Preset scheduling with 5 modes (e) Forced-preset scheduling with 2 modes (f) Forced-preset scheduling with 5 modes

Figure 5. Convergence graph for running Bayesian optimisation on a 40-junction network

Schedule Uniform Distinct Preset (2) Preset (5) Forced-preset (2) Forced-preset (5)
Opt. reward 8096 6904 8164 8176 8175 7320
Convergence iter. 83 391 285 117 88 112

Table 2. Experimental Results for Bayesian optimisation on a 40-junction network

• Distinct scheduling has a particularly slow convergence
rate. This makes it especially tricky to decide when we
have reached our limit.

On the convergence rate, without any surprise, uniform
scheduling converges in only a few iterations, thanks to its
small number of parameters. While preset usually converges
around 100 iterations and 300 iterations when mode number
is set to 5. Forced-preset also converges extremely fast,
due to the small search space. Finally, distinct has a rela-
tively slow convergence rate, taking almost 200 iterations to
converge. This fits well with our expected results.

5.2.2. SMALL NETWORK (N = 40)

In the small network, we increase the number of junctions
and cars to 40 and 400 respectively. Four scheduling meth-
ods are used, and the number of modes in preset and forced-
preset scheduling is set to 5 and 2 for comparison. Also,
the gap among solutions found by four scheduling methods
enlarges with a larger network.

The force-preset scheduling with 5 modes finds the solution
with the best reward of 8176, which outperforms all other
scheduling schemes. The results obtained by preset and
force-preset scheduling with 2 modes are similar and a bit
higher than uniform scheduling result. However, due to
the increase in network size and vast search space, the dis-
tinct scheduling and force-preset scheduling with 5 modes
provide solutions with much lower rewards.

Based on the results, we have following findings:

• Preset (2 and 5 modes) and forced-preset (2 modes)
scheduling find the solution with much higher rewards.
The reason behind is that they allow more flexibility in
scheduling compared with uniform scheduling, while
limit the number of parameters compared with distinct
scheduling.

• Increasing the number of modes to 5 leads to lower
convergence rate. For forced-preset scheduling, the
reward of final solution falls to below 8000 due to vast
search space in this case.

5.2.3. MEDIUM NETWORK (N = 200)

The network size is further increased with N = 200 and
2000 cars to narrow the gap between the emulation and
real-world scenarios. In terms of the optimal reward, preset
and forced-preset scheduling provide a better solution than
the uniform scheduling as shown in Figure 6 and Table 3.
Regarding convergence rate, uniform scheduling takes the
least iteration of 47 to reach convergence, while distinct and
force-preset scheduling take approximately 10 times of that.

Comparing with the results from small networks, we have
the following findings:

• Medium network makes most of the schedules slower
to reach convergence.

Building a Simulator and Emulator for Traffic Signaling

(a) Uniform scheduling (b) Distinct scheduling

(c) Preset scheduling with 2 modes (d) Forced-preset scheduling with 2 modes

Figure 6. Convergence graph for running Bayesian optimisation on a 200-junction network

Schedule Uniform Distinct Preset (2) Forced-preset (2)
Opt. reward 40705 30873 41062 41030
Convergence iter. 45 475 218 432

Table 3. Experimental Results for Bayesian optimisation on a 200-junction network

• The gap between uniform and distinct scheduling re-
wards increases remarkably. This is because distinct
scheduling becomes more difficult to optimise with
complex networks.

• Preset and forced-preset scheduling generally find bet-
ter solutions than uniform scheduling in all network
sizes.

6. Conclusion
In this project, we carried out simulation and emulation of
an urban traffic signalling system. We first built a simulator
to test how different signal scheduling choices affect the
total distance travelled by cars in a given period. Based on
this, we built an emulator to search for optimal scheduling
using Bayesian optimisation. To overcome the problem
of exploding search space without sacrificing flexibility or
descriptiveness, we introduced four different scheduling
schemes and conducted experiments to compare their per-
formances. Results show that preset scheduling gives the
best convergence limit under reasonable number of itera-
tions in most cases. On the other hand, uniform and distinct
scheduling gives much poorer performance due to their own
limitations. Forced-preset does show certain potential in
some cases, but is rather unstable compared to pure preset.

We believe that this simple investigation could inspire much
more sophisticated research in this area. Some future exten-
sion would include:

• benchmarking and improving the 2-staged preset algo-
rithm;

• improving the randomness of graph generation;

• finding other scalable and efficient optimizations for
real-world networks;

• integrating the transformation mentioned in Section 2.5
into the optimisation pipeline to tackle problems in a
more general setting.

We believe the combination of Bayesian optimisation with
traffic planning offers some novel insights and has much
more potential to be discovered. With sufficient research
effort, this area would bring great benefit to city planners
and the general public, with potential applications in other
areas involving network traffic controls.

References
Azlan, N. N. N. and Rohani, M. M. Overview of application

of traffic simulation model. In MATEC Web of Confer-
ences, volume 150, pp. 03006. EDP Sciences, 2018.

Braess, D., Nagurney, A., and Wakolbinger, T. On a paradox
of traffic planning. Transportation science, 39(4):446–
450, 2005.

Burghout, W. Hybrid microscopic-mesoscopic traffic simu-
lation. PhD thesis, KTH, 2004.

Building a Simulator and Emulator for Traffic Signaling

Calhoun, B. H., Cao, Y., Li, X., Mai, K., Pileggi, L. T.,
Rutenbar, R. A., and Shepard, K. L. Digital circuit de-
sign challenges and opportunities in the era of nanoscale
CMOS. Proceedings of the IEEE, 96(2):343–365, 2008.

Frost, V. and Melamed, B. Traffic modeling for telecommu-
nications networks. IEEE Communications Magazine, 32
(3):70–81, 1994. doi: 10.1109/35.267444.

Google. Hash Code 2021 Online Qualification Round: Traf-
fic signaling. https://codingcompetitions.
withgoogle.com/hashcode/archive, 2021.
Last accessed on 17 January 2022.

GPy. GPy: A gaussian process framework in python. http:
//github.com/SheffieldML/GPy, since 2012.

Hagberg, A. A., Schult, D. A., and Swart, P. J. Exploring net-
work structure, dynamics, and function using networkx.
In Varoquaux, G., Vaught, T., and Millman, J. (eds.), Pro-
ceedings of the 7th Python in Science Conference, pp.
11–15, Pasadena, CA USA, 2008.

Hoogendoorn, S. P. and Bovy, P. H. L. State-of-the-art
of vehicular traffic flow modelling. Proceedings of the
Institution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering, 215:283–303, 2001.

Lee, H., Lee, H.-W., and Kim, D. Macroscopic traffic
models from microscopic car-following models. Physical
Review E, 64(5):056126, 2001.

Min, H. and Zhou, G. Supply chain modeling: past, present
and future. Computers & industrial engineering, 43(1-2):
231–249, 2002.

Močkus, J. On Bayesian methods for seeking the extremum.
In Optimization techniques IFIP technical conference, pp.
400–404. Springer, 1975.

Moore, A. W. and Zuev, D. Internet traffic classification
using Bayesian analysis techniques. In Proceedings of
the 2005 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, pp.
50–60, 2005.

Raymond, J.-F. Traffic analysis: Protocols, attacks, de-
sign issues, and open problems. In Designing Privacy
Enhancing Technologies, pp. 10–29. Springer, 2001.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
Bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 25,
2012.

The GPyOpt authors. GPyOpt: A bayesian optimiza-
tion framework in python. http://github.com/
SheffieldML/GPyOpt, 2016.

Thompson, K., Miller, G., and Wilder, R. Wide-area internet
traffic patterns and characteristics. IEEE Network, 11(6):
10–23, 1997. doi: 10.1109/65.642356.

Treiber, M., Kesting, A., and Helbing, D. Delays, inac-
curacies and anticipation in microscopic traffic models.
Physica A: Statistical Mechanics and its Applications,
360(1):71–88, 2006.

https://codingcompetitions.withgoogle.com/hashcode/archive
https://codingcompetitions.withgoogle.com/hashcode/archive
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt

