
Task-Agnostic Graph Neural Network 
Evaluation via Adversarial Collaboration

We propose Graph Adversarial Collaboration 
(GraphAC) – a conceptually novel, principled, 
task-agnostic, and stable framework for 
evaluating GNNs through contrastive self-
supervision, without using any augmentations.

Overview
• It has been increasingly demanding to develop reliable 

methods to evaluate the progress of GNN research for 
molecular representation learning; 

• Current GNN benchmarking approaches (evaluating GNNs on 
some classification/regression tasks) can be limited:
1) classification/regression tasks are not challenging enough;
2) GNNs are particularly vulnerable to noisy labels;

• Most of the existing graph SSL methods either:
1) rely on applying handcrafted augmentations to the graphs, 
which has several severe difficulties, or 
2) exploit task-specific properties of the graphs, which cannot 
be transferred to other domains;

• GraphAC addresses both of the above issues, by having 
GNNs directly compete against each other on the same 
unlabelled graphs, in a contrastive self-supervised manner. 
It then ensures that more expressive GNNs can always win by 
producing more complex and informative graph embeddings.
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Method
1. Intuition

If a GNN can predict another GNN's graph embeddings from its 
own graph embeddings better than the other way round, then its 
embeddings can be deemed more complex and informative than 
the other GNN's embeddings, and that GNN is more expressive.

The two GNNs collaborate by predicting each other's output 
graph embeddings, and compete adversarially to prevent the 
other GNNs from predicting their own graph embeddings.

2. Competitive Barlow Twins

Replace the off-diagonal sum in Barlow Twins (Zbontar et al., 
2021) with the difference between the upper-triangle and the 
lower-triangle of the cross-correlation matrix:
(see bottom-left figure)

• Sum of each triangle measures how much a model's output 
embeddings correlate to the other model's output embeddings

• Smaller-indexed features of the models’ output embeddings 
also become the more important features ⇒ further regularize 
training by ordering the features by importance

3. Overall Framework

Combine the Competitive Barlow Twins losses with the VICReg
(Bardes et al., 2022) covariance regularization loss: 
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Results
GraphAC is evaluated on the OGB molpcba and code2 datasets:

• GraphAC can successfully distinguish GNNs of different 
expressiveness across various aspects (number of GNN 
layers, hidden dimensions, aggregators, GNN architectures, 
and inclusion of edge features), and consistently favors the 
more expressive GNNs;

• GraphAC can genuinely distinguish different GNNs regardless 
of their ordering in the framework;

• GraphAC produces loss differences of GNNs with the same 
expressiveness close to zero, allowing them to tie;

• GraphAC is able to produce a total ordering of all GNNs;

• GraphAC is indeed task-agnostic and can be generalised to 
various distinct domains.

GraphAC’s expressiveness rankings on GNNs are also 
consistent with the GNNs’ actual task performances 
(see correlation plots in the left figure).
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Loss differences of the conducted experiments on the ogbg-molpcba dataset. Negative 
value means GNNA wins the game, and positive value means GNNB wins the game. 
Greater absolute value indicates larger gap in expressiveness determined by GraphAC. 
The consistent gradient from bottom left to upper right clearly indicates that GraphAC
genuinely favors more expressive GNNs.
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Expressiveness Rankings Total Ordering
GraphAC can successfully 
distinguish GNNs of different 
expressiveness across various
aspects, and consistently 
favors more expressive GNNs

If GNNA > GNNB > GNNC in 
expressiveness, then 
GraphAC yields greater loss 
difference between (GNNA, 
GNNC) than (GNNA, GNNB), 
 thereby producing a total 
ordering of all GNNs

No False Winners Order-Invariance
GraphAC produces loss 
differences of GNNs with the 
same expressiveness close to 
zero, allowing them to tie

GraphAC can genuinely 
distinguish different GNNs 
regardless of their ordering in 
the framework

Task-Agnosticism Link with GNN Performance
GraphAC can be successfully 
generalised to various distinct 
domains, without using labels 
or augmentations 

GraphAC’s expressiveness 
rankings on GNNs also 
correlate strongly with GNNs’ 
actual task performances 
(see plots in the left figure)

#Layers in GNNB

2 4 6 8 10

#Layers in GNNA

2 -0.042 1.290 1.458 1.882 1.966

4 -1.315 0.027 0.799 1.399 1.748

6 -1.478 -0.845 -0.014 0.674 0.808

8 -1.687 -1.276 -0.406 0.030 0.555

10 -2.008 -1.751 -1.076 -0.668 -0.004

Hidden dims in GNNB

16 32 64 128 256

Hidden dims in GNNA

16 0.022 1.390 1.883 2.356 2.554

32 -1.240 0.001 0.932 1.614 2.093

64 -2.290 -0.895 0.018 1.206 1.813

128 -2.493 -1.609 -0.997 -0.010 1.490

256 -2.541 -2.041 -1.704 -1.330 -0.006

Aggregators in GNNB

[max] [mean] [sum] Combined

Aggregators in GNNA

[max] -0.026 0.182 0.305 0.342

[mean] -0.174 -0.007 0.241 0.328

[sum] -0.304 -0.248 0.047 0.228

Combined -0.329 -0.295 -0.239 0.018

GNNB architecture

GCN GIN PNA

GNNA architecture

GCN -0.069 0.338 0.467

GIN -0.337 -0.026 0.441

PNA -0.594 -0.419 0.018


