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ABSTRACT

It has been increasingly demanding to develop reliable methods to evaluate the
progress of Graph Neural Network (GNN) research for molecular representation
learning. Existing GNN benchmarking methods for molecular representation
learning focus on comparing the GNNs’ performances on some node/graph clas-
sification/regression tasks on certain datasets. However, there lacks a principled,
task-agnostic method to directly compare two GNNs. Additionally, most of the
existing self-supervised learning works incorporate handcrafted augmentations to
the data, which has several severe difficulties to be applied on graphs due to their
unique characteristics. To address the aforementioned issues, we propose GraphAC
(Graph Adversarial Collaboration) – a conceptually novel, principled, task-agnostic,
and stable framework for evaluating GNNs through contrastive self-supervision.
We introduce a novel objective function: the Competitive Barlow Twins, that allow
two GNNs to jointly update themselves from direct competitions against each other.
GraphAC succeeds in distinguishing GNNs of different expressiveness across vari-
ous aspects, and has demonstrated to be a principled and reliable GNN evaluation
method, without necessitating any augmentations.

1 INTRODUCTION

Graph Neural Networks (GNNs) have gained immense research attention in recent years, leading to
significant progress that has been successfully implemented across a broad range of fields, including
chemistry (Gilmer et al., 2017) and biology (Stokes et al., 2020). This makes GNNs important tools
in the molecular representation learning landscape, and improving their development is of great
interest to the biomedical machine learning community. As this field of research grows rapidly, it
becomes crucial to develop general and reliable evaluation methods to facilitate GNN research and
quantify the performances of various GNN architectures in the context of molecular graph data.

Existing approaches on benchmarking GNNs focus on comparing the GNNs with respect to their
performances on some node/graph classification/regression tasks in a collection of molecular/pro-
tein/DNA datasets (Dwivedi et al., 2020; Hu et al., 2020). However, these approaches can be limited
in the following ways: 1) classification/regression tasks are naturally simple in terms of the combi-
natorial complexity, and cannot fully challenge the GNNs to learn from the graphs; 2) there exist
many different molecular prediction datasets used by various works on GNNs, but there lacks a
standardized way to compare those results on different datasets, and sometimes it is not feasible to
evaluate on all of them; and 3) Deep Neural Networks (DNNs) generally rely on high-quality labeled
data for high-performance training, but unfortunately, large datasets almost always contain examples
with inaccurate, incorrect or even missing labels, known as label noises. It has been demonstrated
that most DNNs, especially GNNs, are vulnerable to noisy labels, resulting in drastically lowered
generalization performances (Dai et al., 2021; NT et al., 2019; Zhang et al., 2017; Zhang et al., 2020).
Consequently, it is highly desirable to develop GNN evaluation methods that can effectively exploit
the training data, without necessitating any labels.
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There have been some attempts to evaluate the capacities of GNNs against theoretical tests such
as the Weisfeiler-Lehman (1-WL) graph isomorphism test (Weisfeiler & Leman, 1968; Xu et al.,
2019; Dwivedi et al., 2020), but the information they provide is normally limited. These methods
are normally designed for small-scale benchmarks, and measure GNNs’ ability to detect patterns,
substructures and clusters (Dwivedi et al., 2020), or graph properties such as diameter, eccentricity,
and spectral radius (Corso et al., 2020). However, these approaches cannot be used consistently,
since certain GNN types can exploit this information as positional encodings to directly cheat the
task (Kreuzer et al., 2021; Bodnar et al., 2021; Dwivedi et al., 2022). Therefore, there is a need for a
task-agnostic evaluation of the expressiveness of GNNs.

Designing principled self-supervised learning (SSL) methods for graphs is also a challenging task.
As labeled data can be expensive, limited or even unavailable in many real-word scenarios, it has
become increasingly demanding to develop powerful SSL methods on graphs. A lot of successful
SSL works on graphs (Veličković et al., 2019; Sun et al., 2020; You et al., 2020; 2021; Xu et al.,
2021) rely on applying handcrafted augmentations to the graphs, which are further described in
Section 2. However, there are several key difficulties in applying augmentations to graphs. Firstly,
there exists no universal augmentation that works across all types of graphs. Secondly, graphs are not
invariant to augmentations like images: applying filters or rotating an image still preserves its essential
invariances, but even a tiny augmentation on a graph can significantly change its topological structure
or intrinsic properties. Another class of SSL methods on graphs that do not require augmentations
(Stärk et al., 2021) relies on exploiting the physical properties of small molecules, and cannot be
generalized to other graph types, such as proteins or DNAs. Therefore, it is highly desirable to develop
a principled and generalizable SSL framework that does not require handcrafted augmentations.

Our solution: Graph Adversarial Collaboration (GraphAC). We address both aforementioned
questions by proposing a conceptually novel, principled, and task-agnostic framework for evaluating
GNNs in the context of molecular data, via a self-supervised, adversarial collaboration manner,
without the need of handcrafted augmentations. In the GraphAC framework, two GNNs directly
compete against each other on the same unlabeled graphs. The more expressive GNN produces
more complex and informative graph embeddings and is thereby able to win the game. We make the
following contributions in this paper:

• We introduce a novel principle for evaluating GNNs, by having them directly compete against
each other in a self-supervised manner, rather than comparing them using a scoreboard of
training performances on some datasets;

• Inspired by the novel principle, we propose a new architecture and an original modification
to the existing Barlow Twins loss (Zbontar et al., 2021) that enables the GNNs to stably
compete against each other, while ensuring that more expressive GNNs can always win;

• We provide the very first framework for evaluating GNN expressiveness directly on the
molecular graph data, without the need of a specific downstream task, or theoretical repre-
sentations of these molecular graphs;

• We develop a principled contrastive learning framework without needing any handcrafted
augmentations, which is also generalizable to various types of GNNs.

2 RELATED WORK

Contrastive Self-Supervised Learning To the best of our knowledge, there has not been any
published attempt to develop a method for evaluating deep learning models by directly competing two
models in a contrastive self-supervised environment, no matter in the general machine learning or the
graph representation learning communities. Current approaches center around competing with a set
of baselines that evaluate a limited number of performance metrics on a fixed number of benchmark
or datasets. However, the state-of-the-arts in contrastive SSL, both in the non-graph and the graph
domains, is still relevant to this work. Their successes in building contrastive learning architectures
can help us build a principled, task-agnostic graph model evaluation framework. It is worth noting
that GraphAC is a task-agnostic evaluation of GNNs, and not an optimization for downstream tasks.
Therefore, the performance of state-of-the-art contrastive SSL on downstream tasks is not relevant.
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Many works on contrastive SSL on graphs (Veličković et al., 2019; Sun et al., 2020; You et al.,
2020; 2021; Xu et al., 2021) are inspired from the successes of the idea of mutual information
maximization between two representations of the same data, with manually applied augmentations,
in the non-graph domain (Gutmann & Hyvärinen, 2010; Oord et al., 2018; Hjelm et al., 2019; He
et al., 2020; Chen et al., 2020). Those works vary in augmentation strategies and mutual information
estimators. However, in order to prevent information collapse (models ignoring the input data and
outputting identical and constant vectors), all those works require large batch sizes or memory banks,
and extensive searches for augmentations and negative pairs, making them very costly. Besides,
applying augmentations to graphs can be much harder than to images, since there exists no universal
augmentation that works for all graph types. Furthermore, graphs are not noise-invariant – small
changes to a graph can significantly alter its topological structure, especially for small graphs such as
molecules. While existing research has developed fine-grained graph augmentations, it is still almost
impossible to apply these augmentations while preserving the graph’s intrinsic properties, such as
the chemical properties of molecules. Moreover, graph augmentations can deviate the data from
real-word distributions, since they introduce arbitrary human knowledge not provided by the training
data. Stärk et al. (2021) propose a noiseless framework by maximizing the mutual information
between the embedding of a 2D molecular graph and the embedding capturing its 3D structure, but
it is specific to the physical properties of molecules, and cannot be generalized to other domains.
Consequently, there is a need for a principled contrastive SSL framework that can be applied across
a diversity of graph types without requiring any augmentations.

Barlow Twins Zbontar et al. (2021) introduce an alternative approach to prevent information
collapse, by maximizing the information contents within the representations. In Barlow Twins, for a
given input batch X ∈ RNb×dx of batch size Nb and dimension dx, two batches of distorted views
X̃A and X̃B of X are generated using manual data augmentation. The two batches of distorted views
X̃A and X̃B are fed into two separate models, which produces batches of d-dimensional embeddings
HA,HB ∈ RNb×d. For simplicity, the features in both HA and HB are assumed to have a mean of
zero across the batch. Barlow Twins then computes the cross-correlation C ∈ Rd×d matrix between
HA and HB along the batch dimension. It then applies the following loss function on C:

LBT =

d∑
i

(1−Ci,i)
2

︸ ︷︷ ︸
invariance term

+λ

d∑
i

d∑
j ̸=i

C2
i,j︸ ︷︷ ︸

redundancy reduction term

(1)

The invariance term of the Barlow Twins loss enforces the two output embeddings to be similar
by pushing the on-diagonal elements of the cross-correlation matrix towards one. Meanwhile, the
redundancy reduction term attempts to ensure that the off-diagonal elements of the cross-correlation
matrix closer to zero, thereby decorrelating the different features of the embeddings, so that the
embeddings contain non-redundant information about the data. This process implicitly maximizes
the amount of information contained within the embedding vectors.

Variance-Invariance-Covariance Regularization (VICReg) Bardes et al. (2022) build VICReg
based on the principle of preserving the information content of the representations, similar to
Barlow Twins. The architecture of VICReg is the same as Barlow Twins, except that it uses three
regularization terms in its objective function: 1) invariance regularization LInv: the mean square
Euclidean distance between the output embeddings; 2) variance regularization LVar: a hinge loss to
maintain the standard deviation of the embeddings along the batch dimension close to 1, which forces
the output embeddings within a batch to be different; and 3) covariance regularization LCov: the sum
of the squared off-diagonal elements of the covariance matrix, with a factor 1/d to scale the term as a
function of the feature dimension. This term attracts the covariances between every pair of features
of the embeddings over a batch towards zero, decorrelating the different features of the embeddings,
thus preventing them from encoding similar information. The overall loss function for VICReg is
then a weighted sum of the invariance, variance and covariance regularization terms:

LVICReg = λLInv + µLVar + νLCov (2)

where λ, µ, ν > 0 are hyperparameters controlling the importance of each term in the loss.
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3 METHOD

The intuition behind Graph Adversarial Collaboration (GraphAC) is to have different GNNs com-
peting against each other on the same unlabeled graphs, and encouraging more expressive GNNs to
produce more complex and informative graph embeddings. This can be measured by the ability to
predict other GNNs’ graph embeddings from a GNN’s own graph embeddings: if a GNN can predict
another GNN’s graph embeddings from its own graph embeddings better than the other way round,
then its graph embeddings can be deemed more complex and informative than the other GNN’s graph
embeddings, and therefore, more expressive. The two GNNs collaborate by predicting each other’s
output graph embeddings, and compete adversarially to prevent the other GNNs from predicting their
own graph embeddings. To solve the challenge of maximizing the performance differences between
different GNNs while ensuring stable training, we introduce the Competitive Barlow Twins, a novel
pair of loss functions modified from the Barlow Twins described in Section 2.

3.1 COMPETITIVE BARLOW TWINS

A deeper analysis of the Barlow Twins shows that, according to Zbontar et al. (2021)’s definition for
the cross-correlation matrix C between the embeddings,

Ci,j =

∑Nb

b HA
b,iH

B
b,j√∑Nb

b

(
HA

b,i

)2√∑Nb

b

(
HB

b,j

)2 (3)

the (i, j)-th entry Ci,j of the cross-correlation matrix represents how much feature i of the first
model’s output embeddings HA correlates to feature j of the second model’s output embeddings
HB . Therefore, for output embeddings of dimensionality d, the row Ci,[i+1:d] at the upper-triangle
of the cross-correlation matrix represents how much feature i of HA correlates to features i + 1
to d of HB . For i close to one, the row Ci,[i+1:d] in the upper-triangle becomes much longer, and
thus the i-th feature of HA represented by that piece of the row correlates to the majority of the
features of HB . For i close to d, the row at the upper-triangle becomes much shorter, and thus the
i-th feature of HA represented by that piece of the row correlates to very few features of HB . This
means that the smaller-indexed features of the first model’s output embeddings HA become the more
important features, if monitored by the upper-triangle of the cross-correlation matrix. Similarly,
in the lower-triangle of the cross-correlation matrix, the column C[j+1:d],j represents how much
feature j of HB correlates to features j + 1 to d of HA, making the smaller-indexed features of the
second model’s output embeddings also becoming the more important features. It can therefore be
hypothesized that under this upper-lower-triangle setting, the first few features of both models’ output
embeddings are targeted at capturing the low frequency signals as they are easier to predict, and the
later features are set to capture the high frequency signals, which are harder to predict.

Based on the above findings, if the two triangles of the cross-correlation matrix are summed, then the
sum of each triangle is dominated by the first few rows/columns, as they contain the most entries.
Therefore, the sum of the triangle provides a measure of how much a model’s output features correlate
to the other model’s output features, weighted by importance, since there are more elements in the
triangle corresponding to the more important features. Consequently, a larger sum implies a better
correlation of a model’s most important features in its output embeddings with the other model’s
output features, which implies a stronger ability to predict the other model’s output embeddings from
its own output embeddings. This naturally yields the definition of the Competitive Barlow Twins loss,
which preserves the invariance term in the original Barlow Twins, but replaces the off-diagonal sum
with the difference between the upper-triangle and the lower-triangle of the cross-correlation matrix:
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=
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 (4)
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Figure 1: Architecture of GraphAC’s framework. Batched unlabeled graph data X ∈ RNb×dx are fed
into two different GNNs, obtaining two different batched embeddings HA,HB ∈ RNb×d. Then, the
cross-correlation matrix C ∈ Rd×d between HA and HB along the batch dimension is calculated.
The Competitive Barlow Twins losses, LCBTA

and LCBTB
, are then computed by pushing the on-

diagonal elements of C towards one, while adding the difference between the upper/lower-triangles of
C. The pair of Competitive Barlow Twins losses are then used to update the two GNNs respectively.
Details about the GraphAC framework are described in Section 3.

where λ, µ > 0 are weighting coefficients, with λ inherited from the original Barlow Twins, and
µ trading off the importance of correlating the opponent GNN’s output features (collaboration)
and preventing the opponent GNN from correlating the GNN’s own output features (competition).
Although the above reasoning discourages the use of different weights on the sums of triangles, which
is also confirmed by the hyperparameter tuning results described in Appendix D.1, we still include µ
in the definition of the Competitive Barlow Twins for the purpose of hyperparameter tuning.

Another important enhancement by the Competitive Barlow Twins is that, since the triangles make
the smaller-indexed features of both models’ output embeddings the more important features, both
models’ output embeddings are ordered by feature importance. This ordering prevents the models
from simply permuting the entries of their output embeddings to avoid being predicted by their
opponent models, and makes the training much more stable.

3.2 PROPOSED FRAMEWORK

The architecture of the GraphAC framework is illustrated in Figure 1. We also include the covariance
regularization term from VICReg in GraphAC’s loss functions because it decorrelates different feature
dimensions within each output graph embeddings, and forces the graph embeddings to be fully used
to capture graph information. Therefore, we obtain the following definitions for GraphAC’s final loss
functions:

LGNNA
= αLCBTA

+ βLCov

LGNNB
= αLCBTB

+ βLCov
(5)

where α, β > 0 are weighting coefficients, and LCov is the VICReg covariance regularization term
defined in Section 2. The invariance regularization term from VICReg is not included in the loss
functions, because the effect of the invariance regularization term has already been achieved by
the invariance term from the Competitive Barlow Twins. We also do not include the variance
regularization term from VICReg in GraphAC’s loss functions, because it forces the variance of the
embeddings over a batch to be above a given threshold, which can potentially cause the training to be
unstable. Although the Competitive Barlow Twins losses can enable stable training of the models,
and can counter the instability caused by the VICReg variance regularization term, we still do not
include that term in the loss functions, because it is used to prevent the models from producing the
same embedding vectors for samples within a batch, which did not occur in this framework.
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4 EVALUATION

4.1 DATA PREPARATION

In order for GraphAC to provide the most realistic evaluations of the GNNs, the datasets used for
evaluating it should be application-oriented with real-word implications. To ensure GraphAC can
discriminate between GNNs with statistical significance, the datasets should be large-scale of high
quality. Moreoever, since GraphAC is designed for graph-level prediction, the datasets should also
be constructed for graph-level prediction, which means that they should contain a large number of
relatively small graphs. Finally, in order for GraphAC to support GNNs both with and without edge
features, and allowing it to study the effect for a GNN with edge features, the datasets should provide
both node and edge features for the graphs. Based on the above requirements, GraphAC is best suited
to drug-like small molecular datasets for the following reasons:

• Molecules can naturally be represented as graphs;

• Molecular property prediction is a fundamental task within many important applications in
chemistry, biology and medicine;

• There is a vast variety of molecules in the world, and the drug-like small molecular graphs
can be trained efficiently without requiring extensive GPU resources.

Therefore, we use the largest molecular property prediction dataset from OGB (Hu et al., 2020),
namely the ogbg-molpcba dataset. It contains 437,929 drug-like molecules, with on average
26.0 atoms (nodes) and 28.1 bonds (edges) per molecule (graph). Despite the fact that the dataset
comprises multiple classification tasks and its class balance is highly skewed, these factors do
not affect GraphAC’s evaluation, as only the molecular graphs are used while their labels are
discarded. In order to confirm that GraphAC is indeed task-agnostic, we also evaluate GraphAC
on the ogbg-code2 dataset, which contains 452,741 abstract syntax trees obtained from Python
method definitions, with on average 125.2 nodes and 124.2 edges per tree.

4.2 EXPERIMENTAL SETUP

Training and experiments were conducted on an NVIDIA A100 SXM GPU with 80GB graphics
memory. All experiments were trained for 50 epochs. The pseudocode for the core training algorithm
of GraphAC can be found in Appendix A, and details of the hyperparameter tuning experiments
are described in Appendix D.1. The source code for GraphAC is publicly available at https:
//github.com/VictorZXY/GraphAC.

In order to fairly compare the GNNs as well as to evaluate GraphAC’s ability in distinguishing
different components of a GNN, the experiments were split into five groups of controlled experiments.
In each group, one component of the GNN is varied, while all other components are fixed. The five
aspects of a GNN evaluated by GraphAC are:

• Number of GNN layers: in this group of experiments, PNAs (Corso et al., 2020) with 2,
4, 6, 8, and 10 layers compete in the GraphAC framework on a double round-robin basis,
with one extra experiment performed for each model to compete against itself. All PNAs
have a fixed hidden dimension of 256, and use the combination of [max, mean, sum] as
their aggregators. All PNAs use [identity, amplification, attenuation] as their scalers, and
their message passing functions are parametrized by 2-layer MLPs. We choose PNAs for
evaluation due to their flexibility and state-of-the-art performance on molecular tasks.

• Hidden dimensions: in this group of experiments, 4-layer PNAs with hidden dimenions
of 16, 32, 64, 128, and 256 competed in the GraphAC framework on a double round-robin
basis, with an additional experiment performed for each model to compete against itself.
All PNAs utilize [max, mean, sum] as their aggregators.

• Aggregators: in this group of experiments, four 4-layer PNAs with 64 hidden dimensions,
and [max], [mean], [sum], [max, mean, sum] as their aggregators respectively, are set to
compete in the GraphAC framework on a double round-robin basis, again with one extra
experiment for each model to compete against itself.
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Table 1: Loss differences of the conducted experiments. Negative value means GNNA wins the
game, and positive value means GNNB wins the game. Greater absolute value indicates larger gap
in expressiveness determined by GraphAC. The consistent gradient from bottom left to upper right
clearly indicates that GraphAC genuinely favors more expressive GNNs. Since the ogbg-code2
dataset does not contain any edge features, no experiments regarding the inclusion of edge features
for the ogbg-code2 dataset are conducted.

#Layers in GNNB (256 hidden dims, aggregators: [max, mean, sum])
ogbg-molpcba ogbg-code2

2 4 6 8 10 2 4 6 8 10

#Layers in GNNA

(256 hidden dims,
[max, mean, sum])

2 -0.04 1.29 1.46 1.88 1.97 -0.01 0.31 0.36 0.63 0.65
4 -1.31 0.03 0.80 1.40 1.75 -0.25 0.01 0.34 0.40 0.52
6 -1.48 -0.84 -0.01 0.67 0.81 -0.36 -0.31 -0.00 0.24 0.34
8 -1.69 -1.28 -0.41 0.03 0.56 -0.59 -0.40 -0.27 0.00 0.19
10 -2.01 -1.75 -1.08 -0.67 -0.00 -0.67 -0.46 -0.35 -0.18 -0.08

Hidden dims in GNNB (4 layers, aggregators: [max, mean, sum])
ogbg-molpcba ogbg-code2

16 32 64 128 256 16 32 64 128 256

Hidden dims in GNNA

(4 layers, [max, mean, sum])

16 0.02 1.39 1.88 2.36 2.55 0.01 0.61 0.81 0.86 0.93
32 -1.24 0.00 0.93 1.61 2.09 -0.66 -0.04 0.53 0.74 0.88
64 -2.29 -0.89 0.02 1.21 1.81 -0.73 -0.66 -0.00 0.39 0.62

128 -2.49 -1.61 -1.00 -0.01 1.49 -0.81 -0.72 -0.41 -0.03 0.42
256 -2.54 -2.04 -1.70 -1.33 -0.01 -0.91 -0.78 -0.64 -0.40 -0.03

Aggregators in GNNB (4 layers, 64 hidden dims)
ogbg-molpcba ogbg-code2

[max] [mean] [sum] Comb. [max] [mean] [sum] Comb.

Aggregators in GNNA

(4 layers, 64 hidden dims)

[max] -0.03 0.18 0.31 0.34 -0.02 0.14 0.30 0.34
[mean] -0.17 -0.01 0.24 0.33 -0.15 -0.00 0.17 0.20
[sum] -0.30 -0.25 0.05 0.23 -0.30 -0.12 -0.01 0.15
Comb. -0.33 -0.29 -0.24 0.02 -0.41 -0.28 -0.15 -0.00

ogbg-
molpcba

Edge feat. − No edge feat. GNN architecture (4 layers, 64 hidden dims)
Hidden dims (PNA) ogbg-molpcba ogbg-code2

64 128 256 GCN GIN PNA GCN GIN PNA

#Layers
(PNA)

4 -0.42 -0.34 -0.20 GCN -0.07 0.34 0.47 -0.02 1.06 1.66
6 -0.45 -0.28 -0.21 GIN -0.34 -0.03 0.44 -1.19 -0.01 1.40
8 -0.42 -0.26 -0.20 PNA -0.59 -0.42 0.02 -1.58 -1.43 -0.00

• GNN architectures: in this group of architectures, PNA, GIN (Xu et al., 2019) and GCN
(Kipf & Welling, 2017), all with 4 layers and 64 hidden dimensions, and PNA with [max,
mean, sum] as aggregators, are set to compete in the GraphAC framework on a double
round-robin basis, again with one extra experiment for each model to compete against itself.

• Edge features: in this group of experiments, PNAs with 4, 6, and 8 layers, and hidden
dimensions ranging from 64, 128, and 256 are used. All PNAs use [max, mean, sum] as
their aggregators. In each experiment, PNAs with the same structure, but one with the edge
features and the other without the edge features, are inserted into GraphAC for competitions.

4.3 RESULTS

Training took from 1.7 hours (2-layer PNA vs. 2-layer PNA) to 4.2 hours (10-layer PNA vs. 10-layer
PNA). The details of the training process are described in Appendix D.2. The training outcomes
indicate that the more expressive GNN can continuously achieve a lower loss in our framework, and
that GraphAC can successfully avoid information collapse.

The results of the experiments, recorded as LGNN (edge features) − LGNN (no edge features) for the edge
features group and LGNNA

− LGNNB
for all other groups, are reported in Table 1. Another two tables

containing detailed results of the experiments can be found in Appendix B. These results demonstrate
that GraphAC can successfully distinguish GNNs of different expressiveness across various aspects,
and consistently favors the more expressive GNNs: 1) deeper GNNs; 2) GNNs with larger hidden
dimensions; 3) combining multiple aggregators > sum > mean > max as aggregators (Xu et al.,
2019; Corso et al., 2020); 4) PNA > GIN > GCN (Xu et al., 2019; Corso et al., 2020); and 5) GNNs
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Figure 2: Correlation plots of GraphAC’s GNN rankings with the GNNs’ performances. The positive
correlations show that GraphAC’s expressiveness rankings align well with the GNNs’ performances.

that include edge features. Furthermore, regardless of the ordering of the GNNs in the framework,
there is no distinction between GNNA or GNNB; this means that for all pairs of experiments, even
if the order is switched, the absolute loss differences still remain roughly equal but only with the
sign flipped. These observations suggest that GraphAC can genuinely distinguish different GNNs,
regardless of their ordering in the framework. Additionally, for the experiments with the same GNNs
competing, GraphAC produced loss differences close to zero, demonstrating its ability to allow GNNs
with the same expressiveness to tie, rather than falsely deciding a winner. Moreover, for every three
GNNs: GNNA, GNNB and GNNC in the experiments, if their expressiveness can be ordered as
GNNA > GNNB > GNNC , then there is also |LGNNA

−LGNNC
| > |LGNNA

−LGNNB
| produced by

GraphAC. This phenomenon shows that GraphAC is able to produce a total ordering of all GNNs,
which further demonstrates its credibility in GNN evaluation.

Some notable group-specific observations are as follows:

Different aggregators It is observed that that the loss differences in the aggregators group are less
significant than in the numbers of GNN layers and hidden dimensions groups. This is possibly because
the effect on expressiveness by the aggregators is less significant than the number of parameters (i.e.,
number of layers and hidden dimensions).

Different GNN architectures It is also observed that the differences between architectures have a
greater impact than simply changing the aggregators. This can be due to other differences, such as
message passing framework in PNA compared to convolutions in GCN and GIN, and the added ϵ
term in GIN compared to GCN.

Inclusion of edge features It is also observed that when the number of layers and hidden dimensions
are larger, the magnitude of the loss difference becomes smaller. This is possibly because when a
GNN is more complex, it can capture enough information from graphs even when they contain no
edge information, thus the gain in performance by including edge features becomes relatively smaller.

4.4 CORRELATION WITH TASK PERFORMANCE

In order to fully validate that the GNNs favored by GraphAC are indeed more expressive, we further
evaluate all the GNNs used in the aforementioned experiments against the supervised learning tasks
under the ogbg-molpcba and ogbg-code2 datasets (Hu et al., 2020). Each of the supervised
training experiments takes 50 epochs. We then perform a correlation study on the GNNs’ task
performances with their expressiveness rankings produced by GraphAC.

Figure 2 shows the GNNs’ task performance on both datasets with respect to their expressiveness
rankings produced by GraphAC, measured using the average precision of multi-class classification
for the tasks on the ogbg-molpcba dataset, and F1 score of sub-token prediction for the tasks
on the ogbg-molpcba dataset. The plots are divided into the experiment groups as presented in
the previous section, in order to accurately demonstrate the correlation. The consistent, monotonic
upward trend shows a strong correlation between the GNNs’ task performance and GraphAC’s
expressiveness rankings on them, suggesting that GraphAC can genuinely distinguish GNNs of
different expressiveness across various aspects, favoring the more expressive GNNs. Separated
plots of Figure 2, with one diagram per experiment group and detailed descriptions of the GNN
architectures and parameters, can be found in Appendix C.
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5 CONCLUSION

We propose GraphAC (Graph Adversarial Collaboration), a novel, principled, and task-agnostic
framework for evaluating GNNs through contrastive self-supervision, without the need of handcrafted
augmentations. Inspired by the Barlow Twins loss (Zbontar et al., 2021), we introduce a novel
objective function: the Competitive Barlow Twins, which replaces its redundancy reduction term with
a difference between the upper-triangle and lower-triangle of the cross-correlation matrix of the two
GNN’s output embeddings. GraphAC successfully distinguishes GNNs of different expressiveness
in all experiments within graphs of two distinct contexts: molecular graphs and abstract syntax
trees, across various aspects including the number of layers, hidden dimensionality, aggregators,
GNN architecture and edge features, and ensures that more expressive GNNs can always win with a
statistically significant difference. GraphAC is also able to estimate the degree of expressiveness of
different GNNs, and produce a total ordering of all GNNs with its measurements. GraphAC provides
a novel principle of evaluating GNNs and an effective contrastive SSL framework without requiring
any augmentations, making a notable contribution to the graph SSL and molecular representation
learning community, which can be applied to many important tasks in drug discovery.

We believe that the success of GraphAC opens up a new, principled way of thinking when developing
contrastive SSL methods, by considering the more expressive GNN as an encoder that learns more
complex but less general information from the graphs, and the less expressive GNN as one that
captures more basic but general information. Consequently, combining the two GNNs creates a better
overall understanding of the graphs and can be used to perform SSL on graphs without manually
applying augmentations, which may have introduced arbitrary human knowledge that were not
originally provided by the training data.
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A ALGORITHM

Algorithm 1 PyTorch-style pseudocode for GraphAC’s framework

# gnn_a, gnn_b: GNN encoder networks
# alpha, beta, lambd, mu: coefficients of the loss terms
# N: batch size
# d: dimensionality of the embeddings
#
# diagonal: on-diagonal elements of a matrix
# off_diagonal: off_diagonal elements of a matrix
# triu: upper-triangle elements of a matrix
# tril: lower-triangle elements of a matrix

for x in dataloader: # load a batch with N samples
# compute embeddings
h_a_out = gnn_a(x) # N x d
h_b_out = gnn_b(x) # N x d

# normalize embeddings along the batch dimension (VICReg)
h_a_out_norm = (h_a_out - h_a_out.mean(dim=0)) # N x d
h_b_out_norm = (h_b_out - h_b_out.mean(dim=0)) # N x d

# covariance matrices
cov_a = (h_a_out_norm.T @ h_a_out_norm) / (N - 1) # d x d
cov_b = (h_b_out_norm.T @ h_b_out_norm) / (N - 1) # d x d

# covariance regularisation loss
cov_loss = off_diagonal(cov_a).pow(2).sum() / d \

+ off_diagonal(cov_b).pow(2).sum() / d

# normalize embeddings along the batch dimension (Barlow Twins)
h_a_out_norm = h_a_out_norm / h_a_out.std(dim=0) # N x d
h_b_out_norm = h_a_out_norm / h_a_out.std(dim=0) # N x d

# cross-correlation matrix
corr = (h_a_out_norm.T @ h_b_out_norm) / N # d x d

# Competitive Barlow Twins loss components
on_diag = (diagonal(corr) - 1).pow(2).sum()
upper_tri = triu(corr, diagonal=1).pow(2).sum()
upper_tri = tril(corr, diagonal=-1).pow(2).sum()

# Competitive Barlow Twins losses
loss_a = alpha * (on_diag + lambd * (upper_tri - mu * lower_tri)) \

+ beta * cov_loss
loss_b = alpha * (on_diag + lambd * (lower_tri - mu * upper_tri)) \

+ beta * cov_loss

# optimisation steps
loss_a.backward()
loss_b.backward()
optimiser_a.step()
optimiser_b.step()
optimiser_a.zero_grad()
optimiser_b.zero_grad()
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B DETAILED RESULTS

Table 2: Loss differences of the conducted experiments on the ogbg-molpcba dataset, with the
uncertainty included and with a higher precision.

#Layers in GNNB (256 hidden dims, aggregators: [max, mean, sum])

2 4 6 8 10

#Layers in GNNA

(256 hidden dims,
[max, mean, sum])

2 -0.042 ± 0.095 1.290 ± 0.127 1.458 ± 0.101 1.882 ± 0.154 1.966 ± 0.175
4 -1.315 ± 0.106 0.027 ± 0.097 0.799 ± 0.190 1.399 ± 0.264 1.748 ± 0.344
6 -1.478 ± 0.218 -0.845 ± 0.320 -0.014 ± 0.069 0.674 ± 0.211 0.808 ± 0.152
8 -1.687 ± 0.284 -1.276 ± 0.269 -0.406 ± 0.087 0.030 ± 0.098 0.555 ± 0.176
10 -2.008 ± 0.245 -1.751 ± 0.235 -1.076 ± 0.298 -0.668 ± 0.160 -0.004 ± 0.065

Hidden dims in GNNB (4 layers, aggregators: [max, mean, sum])

16 32 64 128 256

Hidden dims in GNNA

(4 layers, [max, mean, sum])

16 0.022 ± 0.078 1.390 ± 0.301 1.883 ± 0.174 2.356 ± 0.238 2.554 ± 0.293
32 -1.240 ± 0.215 0.001 ± 0.083 0.932 ± 0.238 1.614 ± 0.287 2.093 ± 0.301
64 -2.290 ± 0.155 -0.895 ± 0.228 0.018 ± 0.047 1.206 ± 0.229 1.813 ± 0.246

128 -2.493 ± 0.262 -1.609 ± 0.340 -0.997 ± 0.166 -0.010 ± 0.084 1.490 ± 0.143
256 -2.541 ± 0.235 -2.041 ± 0.348 -1.704 ± 0.234 -1.330 ± 0.212 -0.006 ± 0.096

Aggregators in GNNB (4 layers, 64 hidden dims)

[max] [mean] [sum] [max, mean, sum]

Aggregators in GNNA

(4 layers, 64 hidden dims)

[max] -0.026 ± 0.060 0.182 ± 0.091 0.305 ± 0.059 0.342 ± 0.051
[mean] -0.174 ± 0.041 -0.007 ± 0.040 0.241 ± 0.068 0.328 ± 0.069
[sum] -0.304 ± 0.032 -0.248 ± 0.038 0.047 ± 0.028 0.228 ± 0.049

[max,mean,sum] -0.329 ± 0.068 -0.295 ± 0.047 -0.239 ± 0.045 0.018 ± 0.047

GNNB architecture (4 layers, 64 hidden dims) Hidden dims (PNA, edge feat. − no edge feat.)

GCN GIN PNA 64 128 256

GNNA

GCN -0.069 ± 0.073 0.338 ± 0.074 0.467 ± 0.117
#Layers

4 -0.418 ± 0.096 -0.340 ± 0.118 -0.198 ± 0.060
GIN -0.337 ± 0.056 -0.026 ± 0.018 0.441 ± 0.142 6 -0.453 ± 0.119 -0.285 ± 0.085 -0.214 ± 0.089
PNA -0.594 ± 0.200 -0.419 ± 0.160 0.018 ± 0.047 8 -0.425 ± 0.100 -0.261 ± 0.099 -0.205 ± 0.061

Table 3: Loss differences of the conducted experiments on the ogbg-code2 dataset, with the
uncertainty included and with a higher precision. Since this dataset does not contain any edge
features, no experiments regarding the inclusion of edge features for this dataset are conducted.

#Layers in GNNB (256 hidden dims, aggregators: [max, mean, sum])

2 4 6 8 10

#Layers in GNNA

(256 hidden dims,
[max, mean, sum])

2 -0.006 ± 0.024 0.312 ± 0.189 0.363 ± 0.115 0.629 ± 0.285 0.655 ± 0.152
4 -0.249 ± 0.135 0.005 ± 0.027 0.338 ± 0.091 0.404 ± 0.147 0.524 ± 0.115
6 -0.357 ± 0.177 -0.308 ± 0.137 -0.002 ± 0.018 0.239 ± 0.142 0.342 ± 0.116
8 -0.594 ± 0.143 -0.395 ± 0.111 -0.267 ± 0.162 0.001 ± 0.024 0.185 ± 0.114
10 -0.670 ± 0.385 -0.463 ± 0.133 -0.346 ± 0.124 -0.183 ± 0.118 -0.077 ± 0.023

Hidden dims in GNNB (4 layers, aggregators: [max, mean, sum])

16 32 64 128 256

Hidden dims in GNNA

(4 layers, [max, mean, sum])

16 0.008 ± 0.051 0.612 ± 0.134 0.805 ± 0.185 0.856 ± 0.156 0.926 ± 0.168
32 -0.660 ± 0.207 -0.036 ± 0.046 0.532 ± 0.195 0.742 ± 0.195 0.875 ± 0.290
64 -0.728 ± 0.128 -0.659 ± 0.233 -0.002 ± 0.043 0.389 ± 0.085 0.620 ± 0.155

128 -0.810 ± 0.166 -0.716 ± 0.163 -0.410 ± 0.115 -0.027 ± 0.056 0.417 ± 0.156
256 -0.914 ± 0.129 -0.784 ± 0.141 -0.636 ± 0.129 -0.396 ± 0.147 -0.028 ± 0.068

Aggregators in GNNB (4 layers, 64 hidden dims)

[max] [mean] [sum] [max, mean, sum]

Aggregators in GNNA

(4 layers, 64 hidden dims)

[max] -0.016 ± 0.052 0.144 ± 0.067 0.300 ± 0.087 0.335 ± 0.148
[mean] -0.146 ± 0.071 -0.001 ± 0.045 0.172 ± 0.089 0.202 ± 0.074
[sum] -0.296 ± 0.199 -0.124 ± 0.048 -0.009 ± 0.049 0.152 ± 0.059

[max,mean,sum] -0.409 ± 0.267 -0.283 ± 0.230 -0.151 ± 0.110 -0.002 ± 0.043

GNNB architecture (4 layers, 64 hidden dims)

GCN GIN PNA

GNNA architecture
(4 layers, 64 hidden dims)

GCN -0.016 ± 0.056 1.061 ± 0.416 1.662 ± 0.402
GIN -1.192 ± 0.493 -0.013 ± 0.062 1.403 ± 0.221
PNA -1.582 ± 0.457 -1.427 ± 0.360 -0.002 ± 0.043
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C DETAILED CORRELATION PLOTS

C.1 OGBG-MOLPCBA DATASET

5th 4th 3rd 2nd 1st
GNN Rankings in Experiment Groups

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e 

Pr
ec

isi
on

 S
co

re

Numbers of layers
Hidden dimensions
Aggregators
GNN architectures

PNA (2 layers,

256 hidden dims)

PNA (4 layers,

256 hidden dims)

PNA (6 layers,

256 hidden dims)

PNA (8 layers,

256 hidden dims)

PNA (10 layers,

256 hidden dims)

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e 

Pr
ec

isi
on

 S
co

re

Numbers of layers

PNA (4 layers,

16 hidden dims)

PNA (4 layers,

32 hidden dims)

PNA (4 layers,

64 hidden dims)

PNA (4 layers,

128 hidden dims)

PNA (4 layers,

256 hidden dims)

0.05

0.10

0.15

0.20

0.25
Av

er
ag

e 
Pr

ec
isi

on
 S

co
re

Hidden dimensions

PNA (4 layers,

64 hidden dims,

[max])

PNA (4 layers,

64 hidden dims,

[mean])

PNA (4 layers,

64 hidden dims,

[sum])

PNA (4 layers,

64 hidden dims,

[max,mean,sum])

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e 

Pr
ec

isi
on

 S
co

re

Aggregators

GCN (4 layers,

64 hidden dims)

GIN (4 layers,

64 hidden dims)

PNA (4 layers,

64 hidden dims)

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e 

Pr
ec

isi
on

 S
co

re

GNN architectures

Figure 3: Correlation plots of GraphAC’s GNN rankings with the GNNs’ task performances on the
ogbg-molpcba dataset, with detailed descriptions of the GNN architectures and parameters.
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C.2 OGBG-CODE2 DATASET
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Figure 4: Correlation plots of GraphAC’s GNN rankings with the GNNs’ task performances on the
ogbg-code2 dataset, with detailed descriptions of the GNN architectures and parameters.
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D TRAINING DETAILS

D.1 HYPERPARAMETER TUNING

For all hyperparameter tuning experiments, we use a 10-layer PNA with 256 hidden dimensions,
and a 10-layer PNA with 128 hidden dimensions, as the pair of competing GNNs. Both PNAs use
[max, mean, sum] as their aggregators, [identity, amplification, attenuation] as their scalers, and their
message passing functions are parametrized by 2-layer MLPs. The output dimensionality is set to 256
for all experiments. These settings on the GNNs are only for standardizing hyperparameter tuning,
and can be changed in the actual evaluation of GraphAC. Adam Kingma & Ba (2015) was used as
the optimizer for all experiments.

Hyperparameter tuning of GraphAC was focused on the batch size of the training data, weighting
coefficients of the sums of the two triangles, and the learning rates. Since the trial experiments have
shown that the Competitive Barlow Twins and VICReg covariance regularisation terms are in the
same order or magnitude, and they share a similar importance in stabilizing training, the Competitive
Barlow Twins terms LCBTA

, LCBTB
and VICReg covariance regularisation terms LCov are set to share

the same weights (i.e., α = β = 1 in Equation (5)), and the value of λ in Equation (4) adopts the
hyperparameter tuning results in the original Barlow Twins paper (Zbontar et al., 2021), which is
5 × 10−3. In order to test whether trading-off is required between collaboration (i.e., predicting the
other GNNs’ graph embeddings) and competition (i.e., preventing the other GNNs from predicting
the GNNs’ own graph embeddings), the µ in Equation (4) is set to take values from 0.1, 0.2, 0.5, 1, 2,
5 and 10. In order to thoroughly validate the proposed framework for GraphAC and find the optimal
hyperparameter settings for it, we conducted hyperparameter tuning experiments in a grid-search
manner on each framework. The hyperparameter search space and the final values selected for
GraphAC are specified in Table 4:

Table 4: Hyperparameters searched for the competitive Barlow Twins framework. Bold values
indicate the final selections.

Dataset Hyperparameter Search space

ogbg-molpcba
Weighting coefficient of the triangle (µ) [0.1, 0.2, 0.5, 1, 2, 5, 10]
Batch size of the training data [64, 128, 256, 512, 1024]
Learning rate [1 × 10−5, 5 × 10−5, 2 × 10−4]

ogbg-code2
Batch size of the training data [64, 128, 256, 512, 1024]
Learning rate [1 × 10−5, 5 × 10−5, 2 × 10−4]

The results show that the GraphAC framework can indeed distinguish the two GNNs with stable
training, and can ensure that the more expressive GNN always has a lower loss. The result that µ = 1
is the most and only suitable weighting coefficient of the triangle also agrees to our derivation of
Competitive Barlow Twins in Section 3.1. Apart from that, we noted that the training of GraphAC
was generally stable and is not sensitive towards the choice of hyperparameters.

16



Published at the MLDD workshop, ICLR 2023

D.2 TRAINING OUTCOMES

Figure 5 presents an example of learning curves of the loss difference between two GNNs with the
GraphAC framework. This also indicates that the more expressive GNN can continuously achieve
a lower loss in our framework. Moreover, the PCA explained variance plot in Figure 6 suggests
that GraphAC successfully avoids information collapse. This further confirms the claim made in
Section 3.1 that the GNNs’ output embeddings are ordered by feature importance, thereby provides a
more stable training process.
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Figure 5: Example learning curves of the loss differences between the stronger and weaker GNNs
under GraphAC’s framework.
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Figure 6: Example PCA explained variance of the stronger GNN’s output embeddings under
GraphAC’s framework.
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