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Background

Previous belief: deep RL is fundamentally unstable, because the
sequence of observed data encountered by an online RL agent is
non-stationary, and online RL updates are strongly correlated

Major deep RL solution prior to this paper: store the agent’s data
in an experience replay memory, and train deep models via mini-
batches or random sampling

Problems:

I Requires very heavy computational and memory resources

I Only works for off-policy methods

Previous work on asynchronous RL training (General Reinforce-
ment Learning Architecture, Gorila) has shown a promising result
[Nair et al., 2015]



This paper

I Proposes an asynchronous RL framework
I Conceptually simple, lightweight
I Enables deep RL for on-policy methods

I Presents asynchronous variants of 4 standard RL algorithms:
I One-step Q-Learning
I One-step Sarsa
I n-step Q-Learning
I Advantage actor-critic

I Best performing method: asynchronous advantage actor-critic
(A3C)

I A3C succeeds in a wide variety of continuous motor control
problems, in addition to Atari games



Asynchronous RL framework

I Asynchronously execute multiple agents in parallel, on multi-
ple instances of the environment
I Each agent can run different exploration policy to maximise

diversity

I Asynchronously update the parameters of the global NN using
the gradients computed by the agents

I Synchronise global and agents’ parameters at fixed intervals
I Benefits:

I Decorrelates the agents’ data, and stabilise learning
I Roughly linear reduction in training time

I Comparison:
I Gorila: uses separate machines for the agents, and maintains a

parameter server
I This paper: all agents are executed on a single machine, using

multiple CPU threads – removes communication costs of
sending gradients and parameters



Asynchronous RL framework

https://medium.com/sciforce/reinforcement-learning-and-asynchronous-

actor-critic-agent-a3c-algorithm-explained-f0f3146a14ab

https://medium.com/sciforce/reinforcement-learning-and-asynchronous-actor-critic-agent-a3c-algorithm-explained-f0f3146a14ab
https://medium.com/sciforce/reinforcement-learning-and-asynchronous-actor-critic-agent-a3c-algorithm-explained-f0f3146a14ab


Recall: Q-learning and Sarsa

I Q-learning: value-based, off-policy TD control

Q(st , at)← Q(st , at) +α
(
rt + γmax

a
Q(st+1, a) − Q(st , at)

)
I Sarsa: value-based, on-policy TD control

Q(st , at)← Q(st , at) + α
(
rt + γQ(st+1, at+1) − Q(st , at)

)



Recall: Q-learning and Sarsa

I Q-learning: value-based, off-policy TD control

Q(st , at)← Q(st , at) +α
(
rt + γmax

a
Q(st+1, a) − Q(st , at)

)
I Sarsa: value-based, on-policy TD control

Q(st , at)← Q(st , at) + α
(
rt + γQ(st+1, at+1) − Q(st , at)

)



Recall: Q-learning and Sarsa

I Q-learning: value-based, off-policy TD control

Q(st , at)← Q(st , at) +α
(
rt + γmax

a
Q(st+1, a) − Q(st , at)

)
I Sarsa: value-based, on-policy TD control

Q(st , at)← Q(st , at) + α
(
rt + γQ(st+1, at+1) − Q(st , at)

)



Asynchronous one-step Q-learning

Algorithm Asynchronous one-step Q-learning: individual actor-learner thread

Require: global shared NN weights θ and target NN weights θ∗

Require: global shared counter T = 0
Initialise thread step counter t ← 0
Initialise target NN weights θ∗ ← θ
Initialise NN gradients dθ ← 0
Get initial state s0
repeat

Take action at with ε-greedy policy based on Qθ(st , a)
Receive reward rt and new state st+1

R ←
{
rt for terminal st+1

rt + γ maxa Qθ∗ (st+1, a) for non-terminal st+1

Accumulate gradients w.r.t. θ: dθ ← dθ +∇θ
(
R − Qθ(st , at )

)2

T ← T + 1, t ← t + 1
if T mod Itarget = 0 then

Update target NN weights θ∗ ← θ
end if
if t mod IAsyncUpdate = 0 or st is terminal then

Perform asynchronous update of θ using dθ
Clear gradients dθ ← 0

end if
until T > Tmax



One-step vs. n-step Q-learning
I Recall Monte Carlo methods:

V (St)← V (St) + α
(
Gt − V (St)

)
I One-step Q-learning: bootstrapping using one-step return

Gt = rt + γmax
a

Q(st+1, a)

I n-step Q-learning: bootstrapping using n-step return

Gt = rt + γrt+1 + · · ·+ γn−1rt+n−1 + γn max
a

Q(st+n, a)

I In practice:
I Take actions for up to tmax steps or a terminal state
I Compute gradients of the n-step updates
I Apply accumulated updates in a single gradient step

I This makes learning more efficient...

I ...but becomes on-policy!



One-step vs. n-step Q-learning

Adapted from [Sutton & Barto, 2018]



Asynchronous n-step Q-learning

Algorithm Asynchronous n-step Q-learning: individual actor-learner thread

Require: global shared NN weights θ and target NN weights θ∗

Require: global shared counter T = 0
Initialise thread step counter t ← 0
Initialise target NN weights θ∗ ← θ
Initialise thread-specific NN weights θ′ ← θ
Initialise NN gradients dθ ← 0
repeat

Clear gradients dθ ← 0
Synchronise thread-specific NN weights θ′ ← θ
Get state st
repeat

Take action at with ε-greedy policy based on Qθ′ (st , a)
Receive reward rt and new state st+1
T ← T + 1, t ← t + 1

until st is terminal or t = tmax

R ←
{

0 for terminal st
maxa Qθ∗ (st , a) for non-terminal st // Bootstrap from last state

for i = t − 1 downto 0 do
R ← ri + γR

Accumulate gradients w.r.t. θ′: dθ ← dθ +∇θ′
(
R − Qθ′ (si , ai )

)2

end for
Perform asynchronous update of θ using dθ
if T mod Itarget = 0 then

Update target NN weights θ∗ ← θ
end if

until T > Tmax



Primer on actor-critic: policy gradient methods
I Policy gradient methods: learn a parametrised policy πθ(at |st)

through stochastic gradient ascent:

θt+1 = θt + α∇̂J(θt)

where J(θt) is some scalar performance measure w.r.t. the
policy parameters θt .

I The policy gradient theorem:

J(θ) =def vπθ(s0)

∇J(θ) = ∇vπθ(s0)

∝
∑
s

µ(s)
∑
a

qπθ(s, a)∇πθ(a|s)

= Eπθ

[∑
a

qπθ(st , a)∇πθ(a|st)

]



REINFORCE: Monte Carlo policy gradient

Standard REINFORCE:

∇J(θ) = Eπθ

[∑
a

qπθ(st , a)∇πθ(a|st)

]

= Eπθ

[∑
a

πθ(a|st)qπθ(st , a)
∇πθ(a|st)
πθ(a|st)

]

= Eπθ

[
qπθ(st , at)

∇πθ(at |st)
πθ(at |st)

]
= Eπθ

[
Gt
∇πθ(at |st)
πθ(at |st)

]
= Eπθ [Gt∇ lnπθ(at |st)]

REINFORCE with baseline:

∇J(θ) =def Eπθ

[(
Gt − b(st)

)
∇ lnπθ(at |st)

]



Actor-critic methods

I Learn approximations to both policy and value functions

I Actor: the learned policy, decides which action to take

I Critic: the learned value function, tells the actor how good its
action was, and how it should adjust

[Sutton & Barto, 1998]



Advantage actor-critic (A2C)

Parametrise policy π(at |st) by θ and value function V (st) by θv

Define advantage of action at in state st :

A(st , at) = Q(st , at)− V (st)

therefore

∇J(θ) =def Eπθ

[(
Gt − Vθv (st)

)
∇ lnπθ(at |st)

]
= Eπθ

[(
rt + γrt+1 + · · ·+ γn−1rt+n−1 + γnVθv (st+n)− Vθv (st)

)
∇ lnπθ(at |st)

]
= Eπθ

[(
n−1∑
i=0

γ i rt+i + γnVθv (st+n)− Vθv (st)

)
∇ lnπθ(at |st)

]

= Eπθ [Aθ,θv (st , at)∇ lnπθ(at |st)]



Asynchronous advantage actor-critic (A3C)

Algorithm Asynchronous advantage actor-critic (A3C): individual actor-learner thread

Require: global shared NN weights θ and θv
Require: global shared counter T = 0

Initialise thread step counter t ← 0
Initialise thread-specific NN weights θ′ ← θ and θ′v ← θv
Initialise NN gradients dθ ← 0
repeat

Clear gradients dθ ← 0 and dθv ← 0
Synchronise thread-specific weights θ′ ← θ and θ′v ← θv
Get state st
repeat

Take action at according to policy πθ′ (at |st )

Receive reward rt and new state st+1
T ← T + 1, t ← t + 1

until st is terminal or t = tmax

R ←
{

0 for terminal st
Vθ′v

(st ) for non-terminal st // Bootstrap from last state

for i = t − 1 downto 0 do
R ← ri + γR
Accumulate gradients w.r.t. θ′: dθ ← dθ +

(
R − Vθ′v

(si )
)
∇θ′ lnπθ′ (ai |si )

Accumulate gradients w.r.t. θ′v : dθv ← dθv +∇θ′v

(
R − Vθ′v

(si )
)2

end for
Perform asynchronous update of θ using dθ
Perform asynchronous update of θv using dθv

until T > Tmax



Experiments

I Evaluated training speeds of all 4 asynchronous methods on
5 Atari 2600 games

I Evaluated A3C’s performance on 57 Atari 2600 games

I Previous methods trained on an NVIDIA K40 GPUs

I Asynchronous methods trained on 16 CPU cores

I For A3C, trained both a feedforward agent and a recurrent
agent with an additional 256 LSTM cells

I Evaluation metric: human starts [Nair et al., 2015]
I Obtain 100 starting points by random sampling from a human

expert’s trajectory
I Run from each starting point for up to 30 minutes emulator

time (108,000 frames)
I Scores are human-normalised [van Hasselt et al., 2016]:

scorenormalised =
scoreagent − scorerandom

scorehuman − scorerandom



Training speeds



Results



Results

Method Training time Mean Median

DQN 8 days on GPU 121.9% 47.5%
Gorila 4 days, 100 machines 215.2% 71.3%
Double DQN 8 days on GPU 332.9% 110.9%
Dueling Double DQN 8 days on GPU 343.8% 117.1%
Prioritised DQN 8 days on GPU 463.6% 127.6%
A3C, feedforward 1 day on CPU 344.1% 68.2%
A3C, feedforward 4 days on CPU 496.8% 116.6%
A3C, LSTM 4 days on CPU 623.0% 112.6%

Table: Mean and median human-normalised scores on 57 Atari games



More challenging tasks

I TORCS 3D car racing: more realistic graphics & dynamics

https://youtu.be/0xo1Ldx3L5Q

I MuJoCo physics engine: continuous action control

I Pole swing-up, quadruped locomotion, planar biped walking,
balancing, 2D target reaching, 3D manipulation, etc.

https://youtu.be/Ajjc08-iPx8

I Labyrinth: 3D environment, maze randomly generated at
every episode

https://youtu.be/nMR5mjCFZCw

https://youtu.be/0xo1Ldx3L5Q
https://youtu.be/Ajjc08-iPx8
https://youtu.be/nMR5mjCFZCw


TORCS 3D car racing results



Data efficiency



Training speed-up



Training speed-up

Method
Number of threads

1 2 4 8 16

1-step Q-learning 1.0 3.0 6.3 13.3 24.1
1-step Sarsa 1.0 2.8 5.9 13.1 22.1
n-step Q-learning 1.0 2.7 5.9 10.7 17.2
A3C 1.0 2.1 3.7 6.9 12.5

Table: Average training speed-up over 7 Atari games

Super-linear speed-up for the one-step methods!



Final discussions

Other good things about this paper:

I Reports hyperparameter tuning details

I Performs robustness and stability tests

Limitations:

I No comparison between A3C and A2C

I No analysis on performance of methods other than A3C

I Can we improve other asynchronous methods, and how?

Outlooks:

I Can be combined with DDPG

I Multi-agent RL – MADDPG
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