
Asynchronous Methods for Deep Reinforcement
Learning

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza,
Alex Graves, Tim Harley, Timothy P. Lillicrap, David Silver,

Koray Kavukcuoglu

Xiangyu Zhao

xz398@cam.ac.uk

11 February 2022



Background

Previous belief: deep RL is fundamentally unstable, because the
sequence of observed data encountered by an online RL agent is
non-stationary, and online RL updates are strongly correlated

Major deep RL solution prior to this paper: store the agent’s data
in an experience replay memory, and train deep models via mini-
batches or random sampling

Problems:

I Requires very heavy computational and memory resources

I Only works for off-policy methods

Previous work on asynchronous RL training (General Reinforce-
ment Learning Architecture, Gorila) has shown a promising result
[Nair et al., 2015]



This paper

I Proposes an asynchronous RL framework
I Conceptually simple, lightweight
I Enables deep RL for on-policy methods

I Presents asynchronous variants of 4 standard RL algorithms:
I One-step Q-Learning
I One-step Sarsa
I n-step Q-Learning
I Advantage actor-critic

I Best performing method: asynchronous advantage actor-critic
(A3C)

I A3C succeeds in a wide variety of continuous motor control
problems, in addition to Atari games



Asynchronous RL framework

I Asynchronously execute multiple agents in parallel, on multi-
ple instances of the environment
I Each agent can run different exploration policy to maximise

diversity

I Asynchronously update the parameters of the global NN using
the gradients computed by the agents

I Synchronise global and agents’ parameters at fixed intervals
I Benefits:

I Decorrelates the agents’ data, and stabilise learning
I Roughly linear reduction in training time

I Comparison:
I Gorila: uses separate machines for the agents, and maintains a

parameter server
I This paper: all agents are executed on a single machine, using

multiple CPU threads – removes communication costs of
sending gradients and parameters



Asynchronous RL framework

https://medium.com/sciforce/reinforcement-learning-and-asynchronous-

actor-critic-agent-a3c-algorithm-explained-f0f3146a14ab

https://medium.com/sciforce/reinforcement-learning-and-asynchronous-actor-critic-agent-a3c-algorithm-explained-f0f3146a14ab
https://medium.com/sciforce/reinforcement-learning-and-asynchronous-actor-critic-agent-a3c-algorithm-explained-f0f3146a14ab


Recall: Q-learning and Sarsa

I Q-learning: value-based, off-policy TD control

Q(st , at)← Q(st , at) +α
(
rt + γmax

a
Q(st+1, a) − Q(st , at)

)
I Sarsa: value-based, on-policy TD control

Q(st , at)← Q(st , at) + α
(
rt + γQ(st+1, at+1) − Q(st , at)

)



Recall: Q-learning and Sarsa

I Q-learning: value-based, off-policy TD control

Q(st , at)← Q(st , at) +α
(
rt + γmax

a
Q(st+1, a) − Q(st , at)

)
I Sarsa: value-based, on-policy TD control

Q(st , at)← Q(st , at) + α
(
rt + γQ(st+1, at+1) − Q(st , at)

)



Recall: Q-learning and Sarsa

I Q-learning: value-based, off-policy TD control

Q(st , at)← Q(st , at) +α
(
rt + γmax

a
Q(st+1, a) − Q(st , at)

)
I Sarsa: value-based, on-policy TD control

Q(st , at)← Q(st , at) + α
(
rt + γQ(st+1, at+1) − Q(st , at)

)



Asynchronous one-step Q-learning

Algorithm Asynchronous one-step Q-learning: individual actor-learner thread

Require: global shared NN weights θ and target NN weights θ∗

Require: global shared counter T = 0
Initialise thread step counter t ← 0
Initialise target NN weights θ∗ ← θ
Initialise NN gradients dθ ← 0
Get initial state s0
repeat

Take action at with ε-greedy policy based on Qθ(st , a)
Receive reward rt and new state st+1

R ←
{
rt for terminal st+1

rt + γ maxa Qθ∗ (st+1, a) for non-terminal st+1

Accumulate gradients w.r.t. θ: dθ ← dθ +∇θ
(
R − Qθ(st , at )

)2

T ← T + 1, t ← t + 1
if T mod Itarget = 0 then

Update target NN weights θ∗ ← θ
end if
if t mod IAsyncUpdate = 0 or st is terminal then

Perform asynchronous update of θ using dθ
Clear gradients dθ ← 0

end if
until T > Tmax



One-step vs. n-step Q-learning
I Recall Monte Carlo methods:

V (St)← V (St) + α
(
Gt − V (St)

)
I One-step Q-learning: bootstrapping using one-step return

Gt = rt + γmax
a

Q(st+1, a)

I n-step Q-learning: bootstrapping using n-step return

Gt = rt + γrt+1 + · · ·+ γn−1rt+n−1 + γn max
a

Q(st+n, a)

I In practice:
I Take actions for up to tmax steps or a terminal state
I Compute gradients of the n-step updates
I Apply accumulated updates in a single gradient step

I This makes learning more efficient...

I ...but becomes on-policy!



One-step vs. n-step Q-learning

Adapted from [Sutton & Barto, 2018]



Asynchronous n-step Q-learning

Algorithm Asynchronous n-step Q-learning: individual actor-learner thread

Require: global shared NN weights θ and target NN weights θ∗

Require: global shared counter T = 0
Initialise thread step counter t ← 0
Initialise target NN weights θ∗ ← θ
Initialise thread-specific NN weights θ′ ← θ
Initialise NN gradients dθ ← 0
repeat

Clear gradients dθ ← 0
Synchronise thread-specific NN weights θ′ ← θ
Get state st
repeat

Take action at with ε-greedy policy based on Qθ′ (st , a)
Receive reward rt and new state st+1
T ← T + 1, t ← t + 1

until st is terminal or t = tmax

R ←
{

0 for terminal st
maxa Qθ∗ (st , a) for non-terminal st // Bootstrap from last state

for i = t − 1 downto 0 do
R ← ri + γR

Accumulate gradients w.r.t. θ′: dθ ← dθ +∇θ′
(
R − Qθ′ (si , ai )

)2

end for
Perform asynchronous update of θ using dθ
if T mod Itarget = 0 then

Update target NN weights θ∗ ← θ
end if

until T > Tmax



Primer on actor-critic: policy gradient methods
I Policy gradient methods: learn a parametrised policy πθ(at |st)

through stochastic gradient ascent:

θt+1 = θt + α∇̂J(θt)

where J(θt) is some scalar performance measure w.r.t. the
policy parameters θt .

I The policy gradient theorem:

J(θ) =def vπθ(s0)

∇J(θ) = ∇vπθ(s0)

∝
∑
s

µ(s)
∑
a

qπθ(s, a)∇πθ(a|s)

= Eπθ

[∑
a

qπθ(st , a)∇πθ(a|st)

]



REINFORCE: Monte Carlo policy gradient

Standard REINFORCE:

∇J(θ) = Eπθ

[∑
a

qπθ(st , a)∇πθ(a|st)

]

= Eπθ

[∑
a

πθ(a|st)qπθ(st , a)
∇πθ(a|st)
πθ(a|st)

]

= Eπθ

[
qπθ(st , at)

∇πθ(at |st)
πθ(at |st)

]
= Eπθ

[
Gt
∇πθ(at |st)
πθ(at |st)

]
= Eπθ [Gt∇ lnπθ(at |st)]

REINFORCE with baseline:

∇J(θ) =def Eπθ

[(
Gt − b(st)

)
∇ lnπθ(at |st)

]



Actor-critic methods

I Learn approximations to both policy and value functions

I Actor: the learned policy, decides which action to take

I Critic: the learned value function, tells the actor how good its
action was, and how it should adjust

[Sutton & Barto, 1998]



Advantage actor-critic (A2C)

Parametrise policy π(at |st) by θ and value function V (st) by θv

Define advantage of action at in state st :

A(st , at) = Q(st , at)− V (st)

therefore

∇J(θ) =def Eπθ

[(
Gt − Vθv (st)

)
∇ lnπθ(at |st)

]
= Eπθ

[(
rt + γrt+1 + · · ·+ γn−1rt+n−1 + γnVθv (st+n)− Vθv (st)

)
∇ lnπθ(at |st)

]
= Eπθ

[(
n−1∑
i=0

γ i rt+i + γnVθv (st+n)− Vθv (st)

)
∇ lnπθ(at |st)

]

= Eπθ [Aθ,θv (st , at)∇ lnπθ(at |st)]



Asynchronous advantage actor-critic (A3C)

Algorithm Asynchronous advantage actor-critic (A3C): individual actor-learner thread

Require: global shared NN weights θ and θv
Require: global shared counter T = 0

Initialise thread step counter t ← 0
Initialise thread-specific NN weights θ′ ← θ and θ′v ← θv
Initialise NN gradients dθ ← 0
repeat

Clear gradients dθ ← 0 and dθv ← 0
Synchronise thread-specific weights θ′ ← θ and θ′v ← θv
Get state st
repeat

Take action at according to policy πθ′ (at |st )

Receive reward rt and new state st+1
T ← T + 1, t ← t + 1

until st is terminal or t = tmax

R ←
{

0 for terminal st
Vθ′v

(st ) for non-terminal st // Bootstrap from last state

for i = t − 1 downto 0 do
R ← ri + γR
Accumulate gradients w.r.t. θ′: dθ ← dθ +

(
R − Vθ′v

(si )
)
∇θ′ lnπθ′ (ai |si )

Accumulate gradients w.r.t. θ′v : dθv ← dθv +∇θ′v

(
R − Vθ′v

(si )
)2

end for
Perform asynchronous update of θ using dθ
Perform asynchronous update of θv using dθv

until T > Tmax



Experiments

I Evaluated training speeds of all 4 asynchronous methods on
5 Atari 2600 games

I Evaluated A3C’s performance on 57 Atari 2600 games

I Previous methods trained on an NVIDIA K40 GPUs

I Asynchronous methods trained on 16 CPU cores

I For A3C, trained both a feedforward agent and a recurrent
agent with an additional 256 LSTM cells

I Evaluation metric: human starts [Nair et al., 2015]
I Obtain 100 starting points by random sampling from a human

expert’s trajectory
I Run from each starting point for up to 30 minutes emulator

time (108,000 frames)
I Scores are human-normalised [van Hasselt et al., 2016]:

scorenormalised =
scoreagent − scorerandom

scorehuman − scorerandom



Training speeds



Results



Results

Method Training time Mean Median

DQN 8 days on GPU 121.9% 47.5%
Gorila 4 days, 100 machines 215.2% 71.3%
Double DQN 8 days on GPU 332.9% 110.9%
Dueling Double DQN 8 days on GPU 343.8% 117.1%
Prioritised DQN 8 days on GPU 463.6% 127.6%
A3C, feedforward 1 day on CPU 344.1% 68.2%
A3C, feedforward 4 days on CPU 496.8% 116.6%
A3C, LSTM 4 days on CPU 623.0% 112.6%

Table: Mean and median human-normalised scores on 57 Atari games



More challenging tasks

I TORCS 3D car racing: more realistic graphics & dynamics

https://youtu.be/0xo1Ldx3L5Q

I MuJoCo physics engine: continuous action control

I Pole swing-up, quadruped locomotion, planar biped walking,
balancing, 2D target reaching, 3D manipulation, etc.

https://youtu.be/Ajjc08-iPx8

I Labyrinth: 3D environment, maze randomly generated at
every episode

https://youtu.be/nMR5mjCFZCw

https://youtu.be/0xo1Ldx3L5Q
https://youtu.be/Ajjc08-iPx8
https://youtu.be/nMR5mjCFZCw


TORCS 3D car racing results



Data efficiency



Training speed-up



Training speed-up

Method
Number of threads

1 2 4 8 16

1-step Q-learning 1.0 3.0 6.3 13.3 24.1
1-step Sarsa 1.0 2.8 5.9 13.1 22.1
n-step Q-learning 1.0 2.7 5.9 10.7 17.2
A3C 1.0 2.1 3.7 6.9 12.5

Table: Average training speed-up over 7 Atari games

Super-linear speed-up for the one-step methods!



Final discussions

Other good things about this paper:

I Reports hyperparameter tuning details

I Performs robustness and stability tests

Limitations:

I No comparison between A3C and A2C

I No analysis on performance of methods other than A3C

I Can we improve other asynchronous methods, and how?

Outlooks:

I Can be combined with DDPG

I Multi-agent RL – MADDPG



References

Hado van Hasselt, Arthur Guez, and David Silver (2016).
Deep Reinforcement Learning with Double Q-Learning.
In Proceedings of AAAI-16, 30(1):2094–2100.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves et al. (2013).
Playing Atari with Deep Reinforcement Learning.
In NIPS Deep Learning Workshop.

Volodymyr Mnih, Adrià P. Badia, Mehdi Mirza, Alex Graves et al. (2016).
Asynchronous Methods for Deep Reinforcement Learning.
In Proceedings of ICML 2016, PMLR 48:1928–1937.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek et al. (2015).
Massively Parallel Methods for Deep Reinforcement Learning.
In ICML Workshop on Deep Learning.

Richard S. Sutton and Andrew G. Barto (1998 & 2018).
Reinforcement Learning: An Introduction (1st & 2nd editions).
MIT Press.



Thank you!


